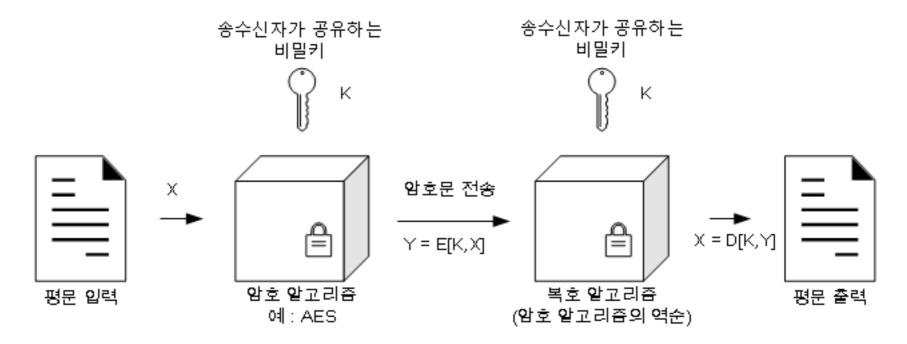
Network Security Essentials

- 2장 대칭 암호와 메시지 기밀성(1) -


전 상 기(sanggi@pel.smuc.ac.kr) 상명대학교 프로토콜공학연구실

목 차

- 대칭 암호 원리
- 대칭 암호 알고리즘
- 랜덤넘버와 의사랜덤넘버

- 대칭 암호(Symmetric encryption) 구조
 - 평문(Plaintext) : 원문이나 데이터로서 알고리즘의 입력으로 이용
 - 암호 알고리즘(Encryption algorithm) : 원문을 다양한 방법 으로 대체(Substitution)하고 치환(Transposition)하는 것
 - 비밀 키(Secret key) : 알고리즘의 한 입력으로 이용하며 정확한 대체와 치환이 이루어짐
 - 암호문(Ciphertext) : 출력으로 나오는 암호화된 메시지
 - 복호 알고리즘(Decryption algorithm) : 암호 알고리즘을 역으로 수행하는 것

- 안전하게 사용하는데 지켜야 할 두 가지 필수 사항
 - 강한 암호 알고리즘이 있어야 함
 - 송신자와 수신자는 공유하는 비밀 키를 안전한 방법으로 획득하야 하고 안전하게 보관해야 함
- 대칭 암호 단순 모델

• 암호

- 암호해독(Cryptanalysis) : 평문이나 키를 찾으려는 시도
- 전수 공격(Brute-force attack) : 모든 가능한 경우를 다 시도 해보는 것
- 암호 시스템의 일반적인 세 개의 독립적인 단계
 - 평문을 암호문으로 전환하는데 사용되는 연산 유형
 - 대체(Substitution)
 - 치환(Transposition)
 - 사용되는 키의 수
 - 동일한 키를 사용 : 대칭 암호(Symmetric encryption), 관용 암호 (Conventional encryption), 비밀키 암호(Secret-key encryption), 단 일키 암호(Single-key encryption)
 - 서로 다른 키를 사용 : 비대칭 암호(Asymmetric encryption), 쌍키암호(Pairwise key encryption), 공개키 암호(Public key encryption)

• 암호

- 암호 시스템의 일반적인 세 개의 독립적인 단계
 - 평문이 처리되는 방법
 - 블록 암호(block cipher) : 한 번에 한 블록 씩 입력하여 처리하고 한 블록씩 출력
 - 스트림 암호(stream cipher) : 연속적으로 처리하고 한번에 한 요소 씩 출력

- 암호화된 메시지 공격 유형
 - 암호문만 알고 있는 공격(Ciphertext-only attack)
 - 통계적 성질과 문자의 특성 등을 추정하여 해독
 - 알려진 평문 공격(Known-plaintext attack)
 - 공개된 평문/암호문 쌍을 이용하여 다음 암호문을 해독
 - 선택 평문 공격(Chosen-plaintext attack)
 - 알려진 평문 공격과 유사
 - 차이점 : 선택 평문 공격은 공격자에게 주어진 평문/암호문 쌍은 공 격자가 선택한 값
 - 선택 암호문 공격(Chosen-ciphertext attack)
 - 암호문을 선택하고 그에 대응하는 평문을 얻는다는 점을 제 외하고 선택 평문 공격과 유사함

- 암호화된 메시지 공격 유형
 - 암호화된 메시지 공격 유형 표

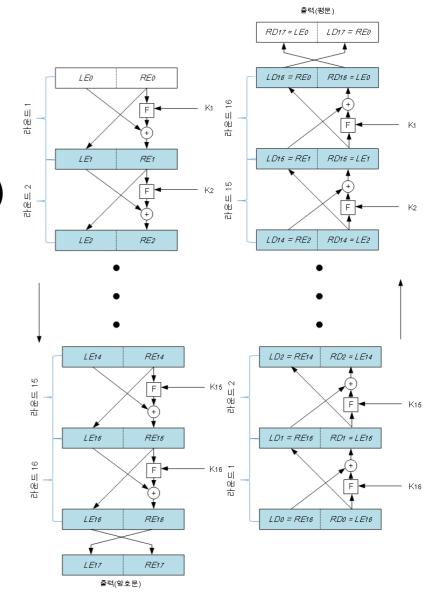
공격 유형	암호해독가가 알고 있는 정보
암호문만 알고 있는 공격(ciphertext-only attack)	암호 알고리즘 해독해야 할 암호문
알려진 평문 공격(known- plaintext attack)	 암호 알고리즘 해독해야 할 암호문 비밀키로 만들어진 한 쌍 혹은 여러 쌍의 평문-암호문
선택 평문 공격(chosen- plaintext attack)	 암호 알고리즘 해독해야 할 암호문 해독가가 선택한 평문 메시지와 비밀키로 그 평문을 암호화한 암호문
선택 암호문 공격(chosen- ciphertext attack)	 암호 알고리즘 해독해야 할 암호문 해독가가 목적을 갖고 선택한 암호문과 비밀키로 그 암호문을 복호화한 평문
선택문 공격(chosen-text attack)	 암호 알고리즘 해독해야 할 암호문 해독가가 선택한 평문 메시지와 키를 가지고 그 평문을 암호화한 암호문 해독가가 목적을 갖고 선택한 암호문과 비밀키로 그 암호문을 복호화한 평문

- 암호 구조가 계산적으로 안전한 구조
 - 암호문을 깨는데 드는 비용이 암호화된 정보의 가치보다 큼
 - 암호문을 깨는데 걸리는 시간이 해당 정보의 수명보다 김
- 키 탐색에 요구되는 평균 시간

키 크기(비트)	키의 종류 수	μs당 한 번의 암호화를 할 때 소 요되는 시간	μs당 10 ⁶ 번의 암호화를 할 때 소요되는 시간
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ μs = 35.8분	2.15밀리초
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ µs = 1142년	10.01시간
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs = 5.4 x 10 ²⁴ 년	5.4 x 10 ¹⁸ 년
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ μs = 5.9 x 10 ³⁶ 년	5.9 x 10 ³⁰ 년
26개 문자(치환)	$26! = 4 \times 10^{26}$	2 x 10 ²⁶ μs = 6.4 x 10 ¹² 년	6.4 x 10 ⁶ 년

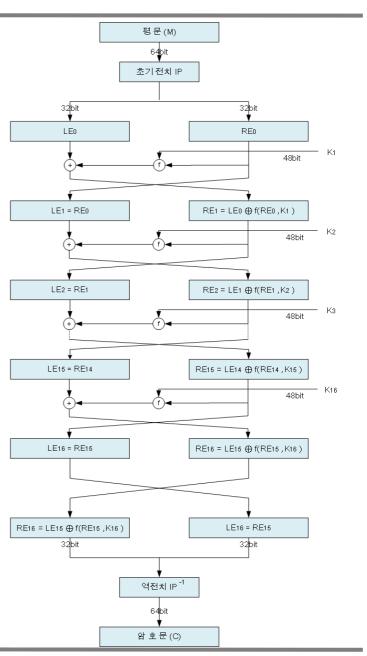
• Feistel 암호

- 1973년 IBM의 Horst Feistel이 최초로 소개한 구조를 따라 만들어짐
- 대부분의 대칭 블록 암호 알고리즘의 구조는 Feistel 암호 구조를 따라 만들어짐
- 여러 개의 라운드로 이루어짐
- 일반적으로 64bit 블록 크기, 16라운드를 사용


• Feistel 암호

- 매개 변수와 설계 특성
 - 블록의 크기(Block size) : 크기가 클 수록 강한 보안 이지만 암호화/복호화 속도가 떨어짐
 - 키 크기(Key size) : 크기가 클 수록 강한 보안 이지만 암호화/ 복호화 속도가 떨어짐
 - 라운드수(Number of rounds) : 수를 증가시켜 보안을 강화할 수 있음
 - 서브키 생성 알고리즘(Subkey generation algorithm) : 복잡 할수록 암호해독이 어려움
 - 라운드 함수(Round function) : 평문과 키를 입력 받는 함수 로 복잡할수록 암호해독이 어려움

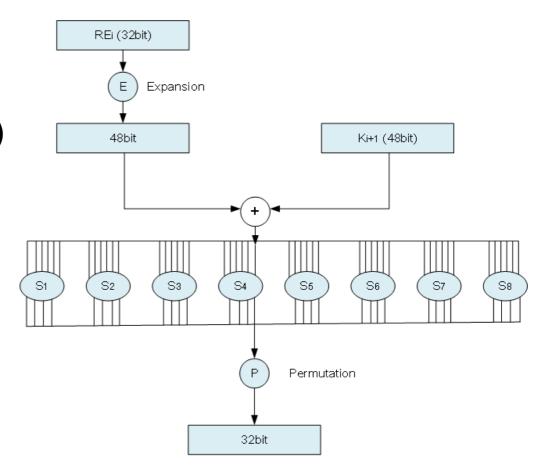
• Feistel 구조


- 설계에 있어 고려할 두 가지 사항
 - 빠른 소프트웨어 암호/복호(Fast software encryption/decryption) : 알고리즘의 실행속도를 고려
 - 용이한 해독(Ease of analysis) : 알고리즘을 간결하고 명확하게 설명할 수 있으면 취약점을 찾기 쉬어 강한 보안성을 갖는 알고리즘을 만들수 있음
- 복호 과정은 근본적으로 암호 과정과 동일

- Feistel 암호 구조
 - 평문 블록을 LE_{0 과} RE₀ 두 조각 으로 나눔
 - LEi = REi, REi = LEi-1 ⊕ f(REi-1,Ki)
 - 위의 과정을 i라운드 만큼 실행
 - 마지막 결과 LE₁₆ 과 RE₁₆ 의 위 치를 바꿈
 - 복호화 과정은 암호화 과정을 반대로 함(키는 K16부터 역순으로)

- DES(Data Encryption Standard) 개요
 - 평문의 길이는 64bit이고 키의 길이는 56bit
 - Feistel 네트워크 변형된 형태
 - 라운드 회수는 16
 - 56bit 원래 키로부터 16개의 서브키를 생성
 - 8bit마다 패리티(Parity)비트 하나씩을 포함
 - DES 복호과정은 근본적으로 암호과정과 동일
 - 1998년 EFF의 "DES cracker"에 의해 암호가 깨짐

- DES 암호화 과정
 - 초기 전치 IP를 거쳐 32bit씩 LE₀, RE₀으로 나누어짐
 - LEi = REi-1, REi = LEi-1 ⊕ f(REi-1, Ki)
 - 위의 과정이 16회 반복
 - 마지막 LEi 과 REi의 위치를 바꿈
 - RE16 과 LE16은 초기전치의 역전치 인 IP^{-1} 을 거쳐 64bit 암호문이 됨

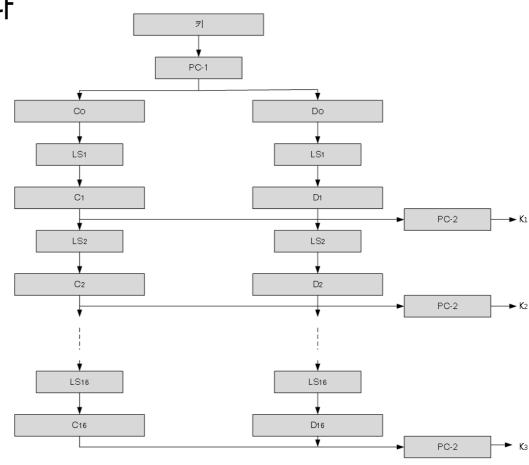

- DES 알고리즘 구조
 - 초기 전치(Initial permutation) IP
 - 64bit를 입력 받아 미리 정의된 규칙으로 재배열

			IP	丑			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

			IP-	1丑			
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

• DES 알고리즘 구조

- f함수 과정
 - REi 입력 32bit는 확대 전 치(Expansion permutation) 를 거쳐 48bit가 됨
 - E(REi)는 서브키 Ki+1과 XOR된 후 6bit씩 8개로 나누어져 8개의 S-Box에 입력됨
 - 각 S-Box의 출력이 4bit 이므로 출력의 합은 32bit 가 됨


• 평형 전치(P-Box permutation)를 통해 f함수 출력

- DES 알고리즘 구조
 - f함수 과정
 - 확대 전치 E 와 평형 전치 P 표

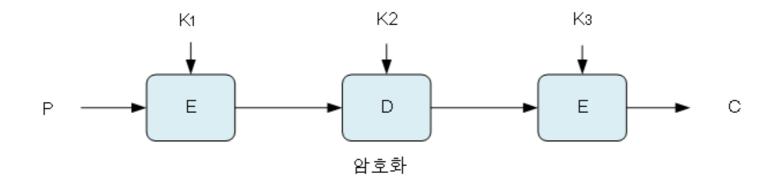
		확대경	전치E		
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

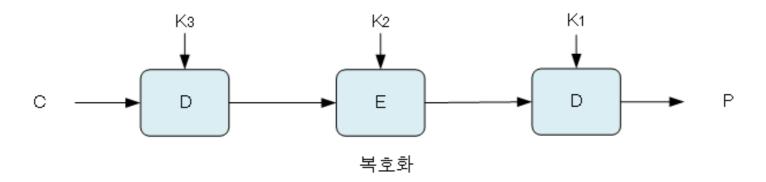
	평형 :	전치 P	
16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

- DES 알고리즘 구조
 - 키 스케줄러(Key scheduler) 구조
 - 64bit 키에 8번째 비트마다 패리티 bit가 포함되어 실제 키 길이는 56bit
 - PC-1따라 전치 시킨 후 28bit씩 Co,Do으로 나뉨
 - Ci, Di는 각각 LSi에서 왼쪽으로 순환 시프트된 후 PC-2에 따라 56bit가 48bit 로 축약 전치 됨

- DES 알고리즘 구조
 - 키 스케줄러(Key scheduler) 구조
 - 키 스케줄러에 사용되는 표

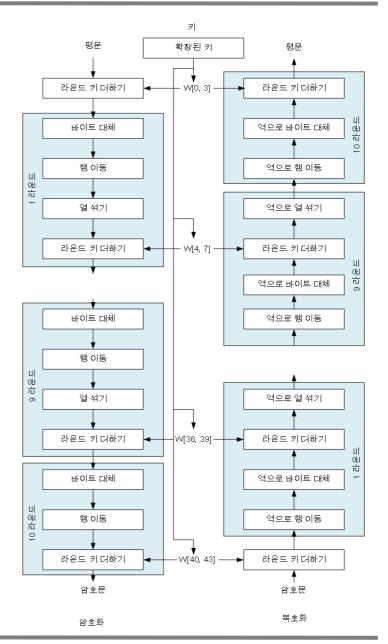
		키김	전치 P	C-1		
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4


	축	약 전	치PC	-2	
14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

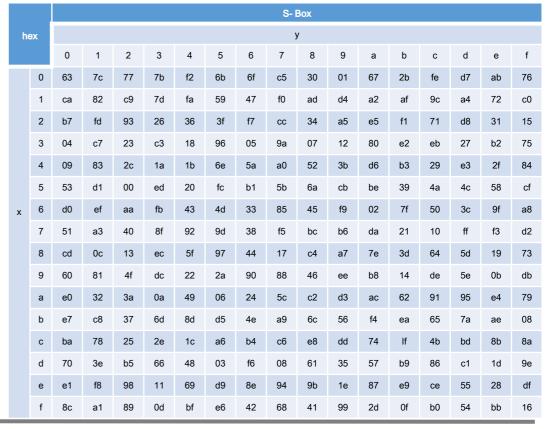

키	스케줄러 l	_S의 Shift	수
위치	시프트	위치	시프트
LS1	1	LS9	1
LS2	1	LS10	2
LS3	2	LS11	2
LS4	2	LS12	2
LS5	2	LS13	2
LS6	2	LS14	2
LS7	2	LS15	2
LS8	2	LS16	1

• 3DES

- DES 알고리즘을 세 번 수행
- 각 56bit인 서로 다른 세 개의 키를 사용
- 총 키의 길이가 168bit가 되어 DES의 취약점을 극복
- 3DES의 주요 약점
 - 소프트웨어 구현 속도가 좀 느림
 - 64bit의 블록 크기를 사용하여 보안이나 효율성 면에서 떨어 짐


- 3DES
 - 3DES 그림
 - 암호-복호-암호 순서를 따름(C=E(K3, D(K2, E(K1, P))))

- AES(Advanced Encryption Standard) 개요
 - 128bit 블록 크기와 128, 192, 또는 256bit의 키를 사용
 - 128bit 키 길이를 많이 사용
 - 암호와 복호를 할 때마다 블록을 상태 배열(State array)에 복사
 - 키를 키 스케줄 워드(Key schedule words)로 확장함
 - Feistel 구조가 아님


- AES 알고리즘 구조
 - 총 10라운드로 구성
 - 시작과 끝은 라운드 키 더하기 단계
 - 9라운드까지 4단계로 구성
 - 마지막 라운드는 3단계로 구성
 - 라운드 키 더하기 단계에서만 키를 사용

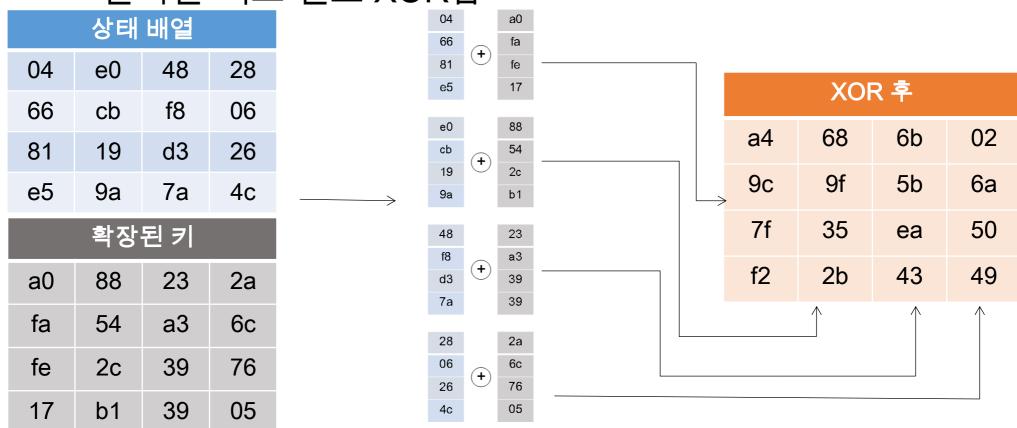
- AES 알고리즘 구조
 - 라운드 구조
 - 바이트 대체(Substitute bytes) : S-Box라는 표를 이용하여 바이트 단위 형태로 블록을 교환

	상태	배열	
19	a0	9a	ea
3d	f4	с6	f8
e3	e2	8d	48
be	2b	2a	80

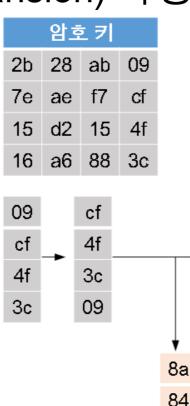
	교혼	후	
d4	e0	b8	1e
27	bf	b4	41
11	98	5d	52
ae	f1	e5	30

• AES 알고리즘 구조

- 라운드 구조
 - 행 이동(Shift rows) : 행과 행을 치환
 - 첫 번째 행은 치환하지 않는다
 - 두 번째 행은 왼쪽으로 1칸씩 이동
 - 세 번째 행은 왼쪽으로 2칸씩 이동
 - 네 번째 행은 왼쪽으로 3칸씩 이동

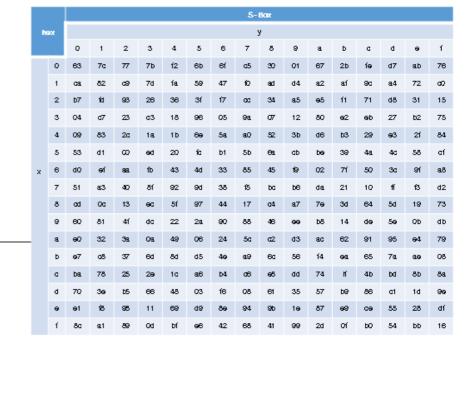

	행 이동					
d4	e0	b8	1e			
27	bf	b4	41			
11	98	5d	52			
ae	f1	e5	30			

이동 후									
d4	e0	b8	1e						
bf	b4	41	27						
5d	52	11	98						
30	ae	f1	e5						


- AES 알고리즘 구조
 - 라운드 구조
 - 열 섞기(Mix columns) : 열에 있는 각 바이트를 대체하여 변 환

					()						
					02	03	01	01		d4					
상태 배열				01	02	03	01		bf		변환 후				
	d4	e0	b8	1e	01 03	01 01	02 01	03 02		5d 30		04	e0	48	28
	bf	b4	41	27		•					-	66	cb	f8	06
	5d	52	11	98	/	•						81	19	d3	26
	30	ae	f1	e5	02 01	03 02	01 03	01 01		1e 27		e5	9a	7a	4c
					01	01	02	03	•	98					
					0.2	0.1	0.1	02		_					

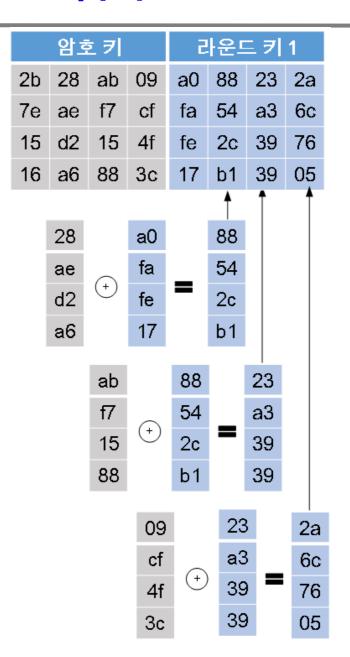
- AES 알고리즘 구조
 - 라운드 구조
 - 라운드 키 더하기(Add round key) : 확장된 키의 일부와 현재 블록을 비트 별로 XOR함



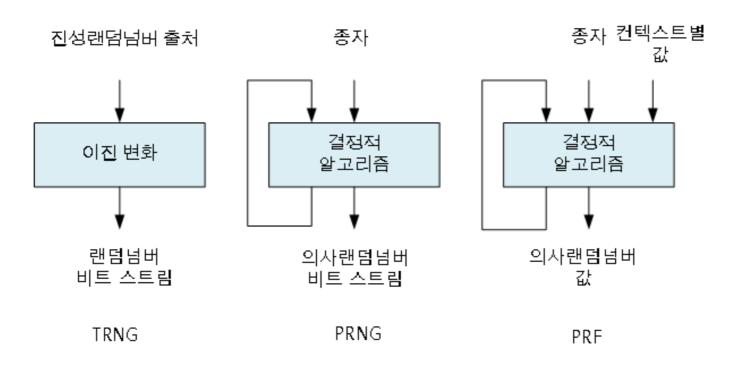
- AES 알고리즘 구조
 - 키 확장(Key expansion) 과정
 - 키 상태배열에 맨 오른쪽 열의 순서를 한 칸씩 이동함
 - S-Box를 적용



eb


01

- AES 알고리즘 구조
 - 키 확장(Key expansion) 과정
 - 첫 번째 열, S-Box로 대체한 열과 준비된 테이블(Rcon) 맨 왼쪽 열을 XOR 연산
 - 연산 결과를 새로운 행렬 맨 왼쪽 열에 넣음
 - 새로운 라운드 키 행렬의 맨 왼쪽 열 부분에만 Rcon을 사용


- AES 알고리즘 구조
 - 키 확장(Key expansion) 과정
 - 두 번째 열 과 라운드 키 맨 왼쪽 부터 XOR연산 후 채움
 - 이 과정을 반복해서 라운드 키를 생성

- 랜덤넘버(Random number)
 - 무작위성(Randomness)
 - 무작위성의 두 가지 기준
 - 균등분포(Uniform distribution) : 수열의 비트분포가 반드시 균등해 야 함
 - 독립성(Independence) : 어떠한 부분수열도 다른 수열로부터 추론 할 수 없어야 함
 - 예측불가능성(Unpredictability)
 - 수열의 일부를 보고 다음에 이어지는 수를 예측할 수 없어야 함
- 의사랜덤넘버(Pseudorandom number)
 - 알고리즘의 상태에 의해 값이 정해지므로 수열은 일정한 주 기를 가짐

- TRNG, PRNG와 PRF
 - 진성랜덤넘버 생성기(True Random Number Generator)
 - 엔트로피 소스(Entropy sourece) 사용
 - 컴퓨터의 물리적 환경에서 얻을 수 있는 값
 - 의사랜덤넘버 생성기(Pseudorandom Number Generator)
 - 종자(seed)를 사용
 - 고정된 값
 - 입력 값이 같으면 출력 값이 같음
 - 피드백 경로가 있음
 - 출력 값을 다시 입력 값으로 사용하기도 함
 - 무한 비트열을 생성 함

- TRNG, PRNG와 PRF
 - 의사랜덤넘버 함수(Pseudorandom Function)
 - 고정된 길이 의사랜덤 비트열을 생성 하는 데 사용하는 함수
 - 생성되는 비트열만 다르지 PRNG와 차이점은 없음
 - TRNG, PRNG와 PRF 그림

- 의사랜덤넘버(Pseudorandom number)
 - 알고리즘의 설계
 - 특정 목적 알고리즘
 - 의사랜덤 비트 스트림을 생성하기 위해서 특정한 목적만을 위해 설계된 알고리즘
 - 기존 암호 알고리즘을 이용한 알고리즘
 - 암호학적 알고리즘은 랜덤화된 입력 효과를 가짐
 - PRNG의 핵심 역할

감사합니다!