2020/01/21 @ 상명대학교

Protocols for Authentication and Key Establishment

- A Tutorial Introduction to Authentication and Key Establishment -

발표자: 최 창 준(<u>changjun@pel.smuc.ac.kr</u>)

지도교수: 이 종 혁(jonghyouk@smu.ac.kr)

상명대학교 프로토콜공학연구실

목 차

- 1. Introduction
- 2. Building a Key Establishment Protocol
- 3. Protocol Architectures
- 4. Cryptographic Properties
- 5. Freshness
- 6. Types of Attack on Protocols
- 7. Design Principles for Cryptographic Protocols

Introduction

- Subject of cryptographic protocols for authentication and key management is likely to be bemused by the sheer variety of techniques and technical background required
- Even before this stage is reached a more fundamental question needs to be faced
 - "What are these protocols there for at all?"
 - To answer this question it is necessary to provide an understanding of what sets cryptographic protocols apart from other types of protocols
- It provides necessary background material for those readers who are not already familiar with the topic of cryptographic protocols

- This section explication an attempt to design one good protocol
- Before designing any protocol the communications architecture must be established
- Our Scenario has a set of users, any two of whom may wish to establish a <u>new key</u> for use in securing their subsequent communications through cryptography
 - Such a key is known as a session key
- Once an appropriate key has been established its use comes in protecting the real data to be communicated with whatever cryptographic mechanisms are chosen

- In order to achieve their aim the users interact with an entity called the server which will also engage in the protocol
- All users trust the server to execute the protocol faithfully and not to engage in any other activity that will deliberately compromise their security
 - Furthermore, the server is trusted to generate the new key and to do so in such a way that it is sufficiently random to prevent an attacker gaining any useful information about it

Protocols involve three entities

- These are two users whom we denote A and B and the trusted server S
- The aim of the protocol is for A and B to establish a new secret key K_{AB}
- The role of S is to generate K_{AB} and transport it to A and B

Aims of the Protocol

- 1. At the end of the protocol the value of K_{AB} should be known to both A and B, but to no other with the possible exception of S
- 2. A and B should know that K_{AB} is newly generated

- Protocol to achieve transport of a new session key K_{AB}
 - 1. User *A* contacts *S* by sending the identities of the two parties who are going to share the new session key
 - 2. Trusted Server S returns the key K_{AB} to A
 - 3. User A passes K_{AB} on to B
 - Generally use two different formats for protocol descriptions

Fig. 1.1. First protocol attempt

- Confidentiality
 - Security Assumption 1
 - The adversary is able to eavesdrop on all messages sent in a cryptographic protocol
 - In order to provide confidentiality it is necessary to use a cryptographic algorithm and associated key

 For now we will simply make the assumption that the server S initially shares a secret key with each user of the system

A passive eavesdropper cannot see K_{AB} since encrypted messages may only be read by the legitimate recipients who have the keys required to decrypt

Fig. 1.2. Second protocol attempt

Authentication

- Security Assumption 2
 - The adversary is able to alter all messages sent in a cryptographic protocol using any information available
 - In addition the adversary can reroute any message to any other principal
 - This includes the ability to generate and insert completely new messages
- The adversary C simply intercepts the message from A to B and substitutes D's identity for A's
 - Where D could be any identity including C's own
- The consequence is that B believes that he is sharing the key with D whereas he is in fact sharing it with A

Fig. 1.3. Attack on the second protocol attempt

Authentication

- Another attack on the protocol does allow C to obtain the session key
 - C alters the message from A to S so that S encrypts the K_{AC} with C's key, K_{CS} , instead of with B's key
 - Since *A* cannot distinguish between encrypted messages meant for other principals she will not detect the alteration
- Result of this attack
 - A will believe that the protocol has been successfully completed with B whereas in fact C knows K_{AC} and so can masquerade as B as well as learn all the information that A sends to B
- In contrast to the previous attack
 - This one will only succeed if C is a legitimate user known to S

Fig. 1.4. Alternative attack on second protocol attempt

Authentication

- Security Assumption 3
 - The adversary may be a legitimate protocol participant(an insider), or an external party(an outsider), or a combination of both
- To overcome the attack
 - The names of the users who are to share K_{AB} need to be bound cryptographically to the value of K_{AB}
 - Where the names of A and B are included in the encrypted messages received from S
 - It can easily be checked that in this protocol neither of the two attacks on the protocol of Fig. 1.2 will succeed

Fig. 1.5. Third protocol attempt

- Reason that a new key is generated for each session
 - Session keys are expected to be vulnerable to attack
 - They may be placed in relatively insecure storage and could easily be discarded carelessly after the session is closed
 - 2. Communications in different sessions should be separated
 - In particular, it should not be possible to replay messages from previous sessions
- For these reasons a whole class of attacks becomes possible based on the notion that old keys may be replayed in a subsequent session
- Notice that even if A is careful in the management of session keys used by her, compromise of a session key by B may still allow replay attacks when A communicates with B

- Security Assumption 4
 - An adversary is able to obtain the value of the session key K_{AB} used in any sufficiently old previous run of the protocol
- Replay attack on protocol
 - C intercepts the message from A to S
 - Indeed S plays no part in the protocol
 - The Key K'_{AB} is an old session key used by A and B in a previous session
 - By Security Assumption 1
 - C can be expected to know the encrypted messages via which K'_{AB} was transported to A and B
 - By Security Assumption 4
 - C can be expected to know the value of K'_{AB}

Fig. 1.6. Attack on third protocol attempt

- Definition 1.1
 - A nonce is a random value generated by one party and returned to that party to show that a message is newly generated
- Generate nonce on protocol
 - User A send nonce N_A to S at the start of the protocol together with the request for a new key
 - If this same value is received with the session key then A can deduce that the key has not been replayed
 - Since B does not directly contact the S
 - It is inconvenient for him to send his own nonce to S to be returned with K_{AB}
 - User B generate a nonce N_B and send this to A protected by K_{AB} itself

Fig. 1.7. Fourth protocol attempt (Needham-Schroeder)

- The protocol in Fig 1.7
 - Their attack illustrates that there was a flaw in the above argument used to justify the protocol design
 - This can be pinpointed to an assumption that only A will be able to form a correct reply to message 4 from B
- In the attack in Fig 1.8
 - Since the adversary C can be expected to know the value of an old session key, this assumption is unrealistic
 - C masquerades as A and is thus able to persuade B to use the old key K'_{AB}

Fig. 1.8. Attack on fourth protocol attempt

Replay

- In the protocol of Fig 1.9
 - To enable both users to send their nonces to S
 - The protocol is now initiated by B who sends his nonce, N_R , first to A

• A adds her nonce N_A , and sends both to S who is now able to return K_{AB} in separate messages for *A* and *B*

Fig. 1.9. Fifth protocol attempt

- It is worth nothing that it has been a very common pattern for published protocols to be subsequently found to be flawed
- Each time a new protocol is designed and an attack is found our understanding of protocol design improves
- The frequent occurrence of such attacks should be a caution, particularly for implementers of security protocols

Protocol Architecture

TBA

Cryptographic Properties

TBA

Freshness

• TBA

Types of Attack on Protocols

TBA

Design Principles for Cryptographic Protocols

TBA

Thanks!

최 창 준 (changjun@pel.smuc.ac.kr)