2022/03/07, 2022 네트워크 세미나

TCP/IP 완벽 가이드

- 1부 TCP/IP 개요와 배경 정보 -

김 지 혜(jihye@pel.sejong.ac.kr)

세종대학교 프로토콜공학연구실

목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조

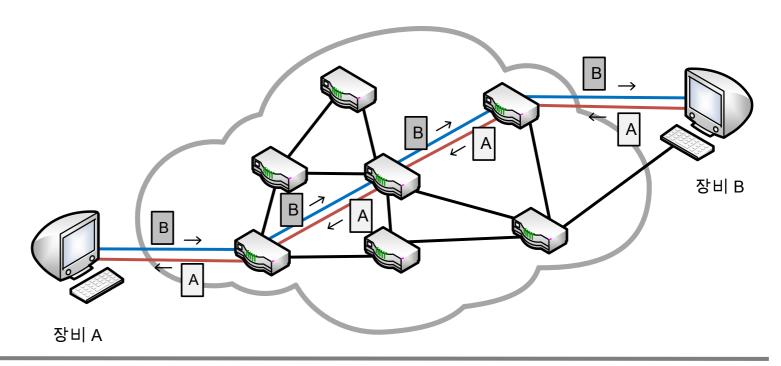
목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조

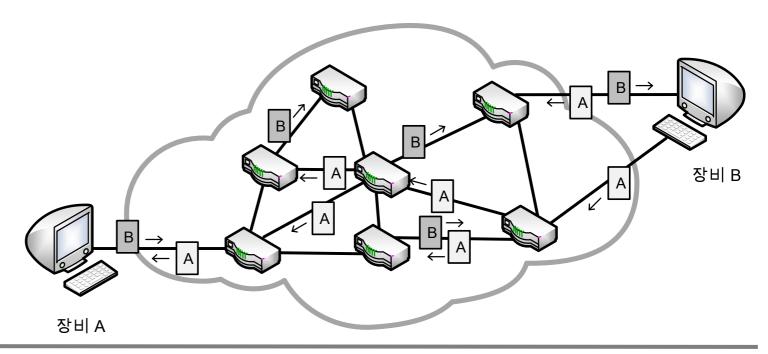
- 네트워크 소개
 - 네트워크(Network)
 - 데이터 교환을 위해 연결되는 컴퓨터 장치들의 집합
 - e.g., 컴퓨터가 정보 교환을 위해 연결되어 있는 것
 - 네트워킹(Networking)
 - 네트워크가 정보를 교류하는 방식
 - e.g., 컴퓨터가 정보 송수신 과정

- 네트워크 소개
 - 네트워킹 장점
 - 연결성과 통신
 - 연결함으로써 통신이 쉬워짐
 - 데이터 및 하드웨어 공유
 - e.g., 프린터기 공유
 - 인터넷 접속 및 공유
 - 데이터 보안 관리
 - 백업이 쉬움
 - 데이터 수정 권한 등을 통제하는 보안 조치 구현 가능
 - 성능 향상과 분배
 - 한 작업을 여러 컴퓨터에서 처리
 - 엔터테인먼트의 용이
 - 사용자들 간 다양한 엔터테인먼트 가능

- 네트워크 소개
 - 네트워킹 단점
 - 하드웨어, 소프트웨어 구성 및 관리 비용
 - 고성능일수록 많은 비용
 - 바람직하지 않은 공유 및 행위
 - e.g., 저작권 침해, 불법 자료 다운로드
 - 데이터 보안 염려
 - 허가 받지 않은 접근이나 파괴에 노출


• 네트워크 특징

- 네트워킹 계층
 - 하위 계층
 - 하드웨어 신호, 하위 수준 통신 담당
 - 데이터 전송
 - 상위 계층
 - 애플리케이션 구현 담당
 - 데이터 생성 및 처리
- 네트워킹 모델
 - 계층 구조와 각 교류 방법 설명
 - OSI(Open Systems Interconnection) 참조 모델
 - 하위 계층
 - e.g., 물리, 데이터 링크, 네트워크, 전송 계층
 - 상위 계층
 - e.g., 세션, 표현, 응용 계층


7	ଉ ଚ୍ଚ
6	표현
5	세션
4	전송
3	네트워크
•	
2	데이터 링크
1	물리

- 네트워크 특징
 - 네트워킹 구조
 - 각 계층의 특정 기능 설명하는 규칙 모음
 - 네트워킹 프로토콜
 - 네트워크의 통신을 위한 규칙 또는 약속
 - e.g., TCP/IP, HTTP, FTP

- 네트워크 특징
 - 경로 사용 여부에 따른 네트워킹 기술
 - 서킷 스위칭(Circuit-Switching)
 - 가장 적합한 경로를 먼저 탐색하여 연결한 후 데이터 전송하는 방식
 - e.g., 전화 시스템

- 네트워크 특징
 - 경로 사용 여부에 따른 네트워킹 기술
 - 패킷 스위칭(Packet-Switching)
 - 패킷이라는 작은 조각으로 분할한 후 패킷들이 개별로 적합한 경로를 탐색하며 데이터 전송하는 방식
 - e.g., 우편 시스템

- 네트워크 특징
 - 경로 사용 여부에 따른 네트워킹 기술
 - 서킷 스위칭과 패킷 스위칭의 비교

서킷 스위칭	패킷 스위칭
유일한 경로 이용	여러 개의 경로 이용
사용자 수 제한 있음	사용자 수 제한 없음
동시 통신 불가능	동시 통신 가능
연결하고 데이터 전송	연결하지 않고 데이터 전송
일정한 전송 속도를 가짐	네트워크 상황에 따라 대기 시간이 다름
하나의 라우터가 잘못되면 전송 실패	하나의 라우터가 잘못되어도 전송 우회 가능

- 네트워크 특징
 - 장비 간 연결 여부에 따른 프로토콜
 - 연결형 프로토콜
 - 데이터 전송 전에 연결을 미리 설정하여 송신하는 프로토콜
 - e.g., 서킷 스위칭, 패킷 스위칭(가상 회선 방식), TCP
 - 비연결형 프로토콜
 - 장비 간에 연결을 맺지 않고 데이터를 즉시 전송하는 프로토콜
 - e.g., 패킷 스위칭(데이터그램 방식), UDP

• 네트워크 특징

- 장비 간 연결 여부에 따른 프로토콜
 - TCP
 - 데이터를 메시지 형태로 보내기 위한 프로토콜
 - UDP
 - 데이터를 독립적인 패킷 단위로 처리하는 프로토콜

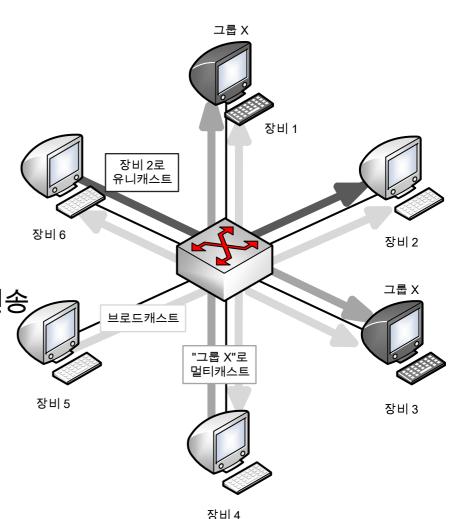
TCP	UDP
가상 회선 방식 사용	데이터그램 방식 사용
데이터 전송 순서 보장	데이터 전송 순서 바뀔 수 있음
데이터 손실 우려가 적음	데이터 손실 우려가 있음
속도가 상대적으로 느림	속도가 상대적으로 빠름

- 메시지(Message)
 - 메시지 지칭 용어

OSI 모델 계층	메시지 지칭 용어
물리 계층(1계층)	비트(Bit)
데이터 링크 계층(2계층)	프레임(Frame)
네트워크 계층(3계층)	패킷(Packet)
전송 계층(4계층)	세그먼트(Segment)
세션, 표현, 응용 계층(5~7계층)	메시지(Message)

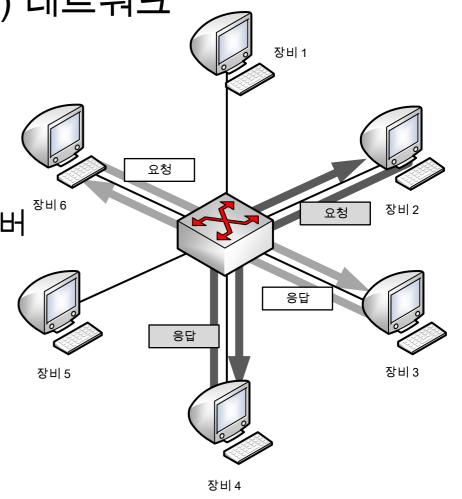
- 메시지(Message)
 - 메시지 지칭 용어
 - 셀
 - 크기가 고정된 메시지
 - 프로토콜 데이터 유닛(PDU, Protocol Data Unit)
 - OSI 참조 모델 프로토콜 메시지 설명을 위한 용어
 - 동일 통신 계층 간 교환되는 메시지
 - 서비스 데이터 유닛(SDU, Service Data Unit)
 - OSI 참조 모델 프로토콜 메시지 설명을 위한 용어
 - 상향 또는 하향 통신 계층 간 교환되는 메시지

- 메시지(Message)
 - 메시지 포매팅(Message Formatting)
 - 메시지의 구조를 결정하는 방법
 - 메시지 구성 요소
 - 헤더(Header)
 - 데이터 앞부분에 위치하는 정보
 - 제어 정보와 관련된 바이트 단위의 데이터
 - e.g., 데이터 해석 및 사용



- 메시지(Message)
 - 메시지 구성 요소
 - 데이터(Data)
 - 전송되는 실제 데이터로, 페이로드라고 불림
 - 푸터(Footer)
 - 데이터 뒷부분에 위치하는 정보
 - 헤더와 기능상 동일하지만, 결과를 토대로 제어하는 데이터를 관리
 - e.g., 계산된 값을 저장하거나 순환 중복 검사(CRC, Cyclic Redundancy Check)에서 에러를 탐지할 때 쓰임

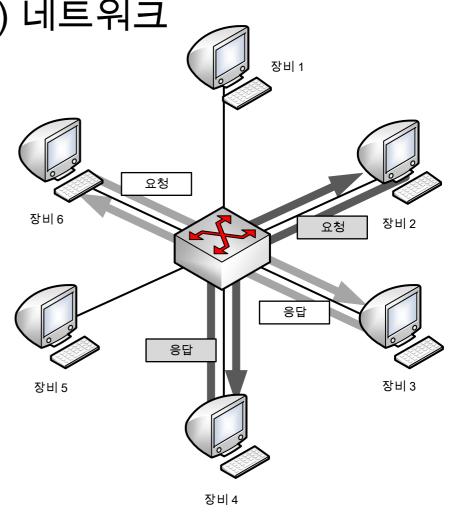
• 메시지(Message)


- 메시지 주소지정과 전송 방법
 - 유니캐스트(Unicast)
 - 한 장비에서 다른 한 장비로 데이터 전송
 - 특정한 하나의 주소 지정
 - e.a., 전화
 - 브로드캐스트(Broadcast)
 - 한 장비에서 모든 장비로 데이터 전송
 - 특정 네트워크의 모든 호스트와 클라이언트가 듣게 되는 주소 이용
 - e.g., 아파트 전체 방송
 - 멀티캐스트(Multicast)
 - 한 장비에서 특정 장비 그룹 으로 데이터 전송
 - 특정 장비 그룹에 등록된 호스트들만 주소 지정
 - e.g., 수강신청

• 네트워크 구조 모델

• 피어투피어(Peer-to-Peer, P2P) 네트워크

- 정의
 - 모든 장비들이 동일한 역할을 수행하는 네트워크
- 특징
 - 모든 장비가 클라이언트이자 서버
 - 서로 요청 및 응답(송수신) 가능
 - 보통 작은 네트워크에서 사용
 - e.g., 비트코인 거래

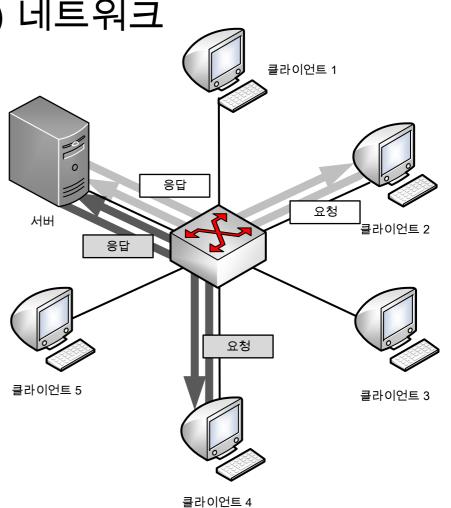

• 네트워크 구조 모델

• 피어투피어(Peer-to-Peer, P2P) 네트워크

- 장점
 - 서버가 필요하지 않음
 - 비용 저렴
 - 관리자가 따로 필요하지 않음
 - 한 장비에 문제가 생겨도 문제 없음

• 다점

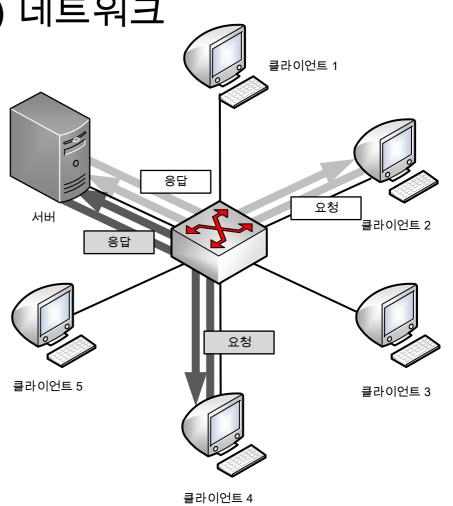
- 서버가 없어서 사용자에 의해 보안이 관리되기 때문에 공격에 취약함
- 각 장비의 프로그램을 관리해야 해서 성능 저하
- 각 컴퓨터에서 백업 수행


• 네트워크 구조 모델

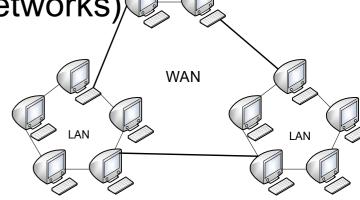
• 클라이언트/서버(Client-Server) 네트워크

- 정의
 - 소수의 중앙 서버와 다수의 클라이언트 장비들이 통신하는 네트워크

• 특징


- 클라이언트가 정보를 요청하면 서버에서 정보를 찾아 응답
- 중앙화 된 네트워크
- 보통 대형 네트워크에서 사용
 - e.g., 인터넷 웹 사이트

• 네트워크 구조 모델


• 클라이언트/서버(Client-Server) 네트워크

- 장점
 - 서버 백업으로 데이터 손실 줄임
 - 확장성
 - 네트워크에 컴퓨터나 서버 추가가 쉬움
 - 보안 강화
 - 컴퓨터 접근 권한 설정 가능
- 다점
 - 한 번에 많은 요청을 하면 서버 문제
 - 설치 및 유지 관리 비용

• 네트워크 유형

- 크기와 통신 방법에 따른 네트워크 구분
 - 근거리 네트워크(LAN, Local Area Networks)
 - 가정 및 학교 같은 제한된 영역의 컴퓨터를 연결하는 네트워크
 - 보통 가까이 있거나, 소형 컴퓨터를 연결할 때 사용
 - 무선 LAN(WLAN, Wireless LANs)
 - 선 없이 가까이 있는 컴퓨터를 연결하는 네트워크
 - 완전히 무선으로 구성된 것이라 볼 수 없음
 - 특수 목적 장치가 사용되는 경우 선을 사용
 - 원거리 네트워크(WAN, Wide Area Networks)
 - 도시 및 국가 같은 광범위한 지역 단위의 컴퓨터를 연결하는 네트워크
 - 먼 거리의 장비나 다른 네트워크 혹은 LAN을 연결할 때 사용

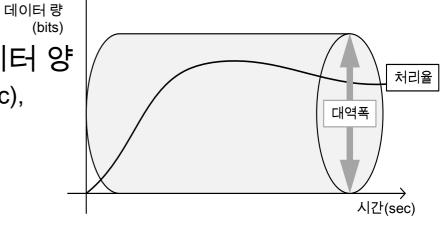
• 네트워크 유형

- 크기와 통신 방법에 따른 네트워크 구분
 - 캠퍼스 네트워크(CAN, Campus Area Networks)
 - 대학교 캠퍼스 같은 동일 지역의 여러 건물에 걸친 네트워크
 - LAN과 WAN 사이의 중간적 네트워크
 - 도시권 네트워크(MAN, Metropolitan Area Networks)
 - 특정 지역 및 도시 같은 한정된 영역의 컴퓨터를 연결하는 네트워크
 - LAN보다는 큰 영역인 작은 WAN로 볼 수 있음

• 네트워크 유형

- 상대적 크기 설명을 위한 네트워크 용어
 - 네트워크(Network)
 - 가장 일반적인 용어
 - 수천 혹은 수만 대의 머신이 연결된 것
 - 서브네트워크(Subnetwork)
 - 하나의 네트워크가 분할되어 나눠진 작은 네트워크
 - 서브넷이라고 불리기도 함
 - 세그먼트(Segment)
 - 네트워크의 작은 영역
 - 대부분 서브네트워크보다 좀 더 작고 구체적인 의미
 - 인터네트워크(Internetwork)
 - 작은 네트워크들을 연결한 큰 네트워크 구조
 - 인터넷이라고 불리기도 함

- 인터넷(Internet)과 유사한 용어
 - 인터넷(Internet)
 - 여러 개의 네트워크를 묶은 것
 - 인터넷을 탐색할 때 웹 브라우저 이용
 - 인트라넷(Intranet)
 - 인터넷 기술을 기업 내 정보 시스템에 적용한 것
 - 내부(회사 및 구성원)에서만 데이터 접근 가능
 - 엑스트라넷(Extranet)
 - 기업과 기업 간 인트라넷을 서로 연결한 것
 - 외부(파트너 및 고객)에서 데이터 접근 가능


목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조

- 네트워크 성능 문제
 - 네트워크 성능을 위한 고려사항

고려사항	추가 설명
설계와 구현 비용	고성능일수록 비용 증가
품질	안정성, 성능 같은 모든 특성에 영향 줌
표준화	표준 설계를 따를수록 개량 및 지원이 쉬움
안정성	빠른 네트워크가 보다 안정적인 대신 비용 증가
확장성과 개량성	예상 요구 사항을 미리 고려하여 설계 혹은 필요할 때마다 업그레이드
관리와 유지의 편의성	고성능일수록 관리 및 유지에 많은 작업 필요, 느린 네트워크에 비해 많은 문제 발생
공간과 설비 문제	공간이나 배치에 영향을 받음

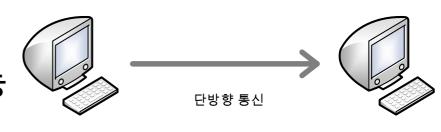
- 네트워크 성능 문제
 - 네트워크 성능 측정 용어
 - 속도(Speed)
 - 네트워킹에서 일어날 수 있는 최대 데이터 전송 능력
 - 대역폭(Bandwidth)
 - 단위 시간 동안 전송될 수 있는 최대 데이터 양
 - 기본 단위: 초당 비트 수(bps)
 - 주파수 대역폭 또는 데이터 용량 의미
 - 처리율(Throughput)
 - 단위 시간 동안 실제로 전송된 데이터 양
 - 기본 단위: 초당 전송된 비트 수(bit/sec), 초당 전송된 바이트 수(Byte/sec)
 - 지연 시간(Latency)
 - 요청을 처리한 후, 응답 데이터가 도착할 때까지의 시간 간격

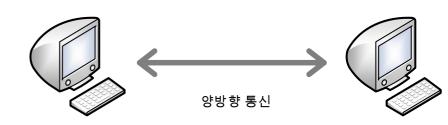
• 네트워크 성능 문제

- 네트워크 성능 측정 단위
 - 비트(bit)와 바이트(Byte)
 - 비트는 컴퓨터 정보의 최소 단위
 - 바이트는 컴퓨터가 조작하는 정보의 최소 처리 주소(1Byte = 8bit)
 - 속도는 비트 사용, 처리율은 비트와 바이트 모두 사용
 - 하드웨어 처리율은 초당 비트 수(bit/s, bps, b/s), 소프트웨어 애플리케이션 전송율은 초당 바이트 수(bytes/s, Bps, B/s)로 표현함
 - 보(Baud)
 - 처리율이 아닌 신호 변화율(초당 신호 수) 측정하는 단위
 - 초당 비트 수와 보의 차이점
 - 초당 비트 수는 데이터를 측정하고, 보는 정해진 데이터 묶음을 측정
 - e.g., 4bit 데이터를 초당 200개 보내는 경우 초당 비트 수: 4bit * 200 = 800(bps), 보: 200(Baud)

• 네트워크 성능 문제

- 네트워크 성능에 영향을 주는 요인
 - 상시 네트워크 부하
 - 기본적인 상시 부하 때문에 모든 대역폭을 사용할 수 없음
 - 전송되는 비트 중 일부는 전송을 위한 과정으로 쓰임
 - 외부 성능 제한
 - 하드웨어의 데이터 처리 능력, 대역폭 제한
 - 네트워크 설정 문제
 - 하드웨어나 소프트웨어의 구성 문제로 인한 속도 저하
 - 케이블 연결 문제, 문제 있는 드라이버 사용
 - 비대칭
 - 보통 양쪽 방향 중 한쪽 방향의 대역폭이 훨씬 큰 구조
 - 네트워크에서 사용자 방향 대역폭이, 사용자에서 네트워크 방향 대역폭보다 큼. (사용자가 보통 업로드보다 다운로드를 많이 하기 때문)


- 네트워크 연결 동작 방식
 - 단방향 동작
 - 한 장비가 송신 또는 수신만 가능
 - e.g., TV


- 양방향으로 송수신 가능. 동시에는 불가능
 - e.g., 무전기

- 양방향으로 동시에 송수신 가능
 - e.g., 전화

- 네트워크 성능 개념
 - 서비스 품질(QoS, Quality of Service)
 - 데이터 전송에 일정 수준 성능을 보장하기 위한 능력
 - 데이터를 어떻게 전송하는지 설명
 - 설정 속도를 유지할 수 있도록 데이터 스트림 제공

QoS 특징	추가 설명
대역폭 예약	일정 시간 동안 대역폭을 예약하여 작업 수행 시 사용 가능하도록 함
대기 시간 관리	대기 시간을 특정 값 이하로 제한
트래픽 우선순위 조정	중요한 연결에 우선 순위를 주어 패킷 처리
트래픽 셰이핑 (Shaping)	버퍼와 속도 제한으로 전송율 유지
네트워크 혼잡 예방	혼잡 현상이 일어나는 경우, 데이터 다시 라우팅

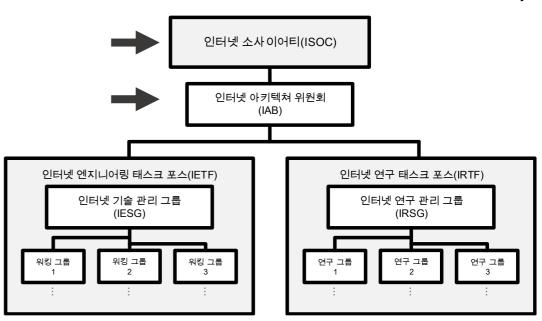
목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조

네트워크 표준과 기구

• 네트워크 표준

- 사유 표준
 - 회사들이 각각 정해 둔 표준
- 공개 표준
 - 모두가 인정하고, 국제 기구로부터 검증된 것
- 실질 표준
 - 표준 위원회로부터 승인된 건 아니지만, 대부분의 회사들이 표준처럼 쓰고 있는 것
- 표준이 여러 개인 이유
 - 원본 표준의 갱신
 - 복잡한 문서의 경우 하나 이상의 문서로 설명
 - 관련된 다른 기술의 채용 혹은 다른 기술 문서에 기반한 근거
 - 하나 이상의 기구가 기술 개발에 참여

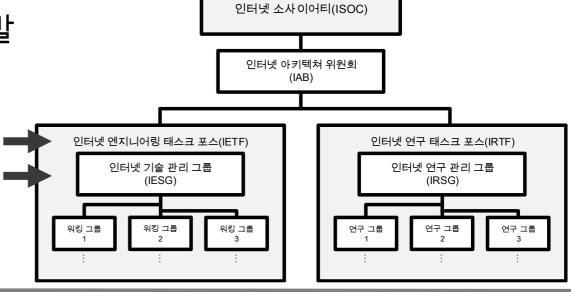

네트워크 표준과 기구

• 국제 네트워킹 표준 기구

• 표준 개발 절차를 관리하는 감독 기구

국제 네트워킹 표준 기구명	기구의 역할
국제 표준화 기구 (ISO, International Organization for Standardization)	OSI 참조 모델을 만들었음
미국 표준 협회 (ANSI, American National Standards Institute)	미국 컴퓨터와 정보 기술 표준 조정 및 출판
정보 기술 산업 협의회 (ITIC, Information Technology Industry Council)	컴퓨터 관련 주제의 표준 개발
국가 정보 기술 위원회 (NCITS, National Committee for Information Technology)	정보 기술 관련 표준 개발 및 관리
미국 전기 전자 학회 (IEEE, Institute of Electrical and Electronics Engineers)	IEEE 802 프로젝트 같은 유명 네트워킹 기술이 알려진 전문 기구
미국 전자 공업 협회 (EIA, Electronic Industries Alliance)	전기 결선과 전송 표준 출판
미국 통신 산업 협회 (TIA, Telecommunications Industry Association)	통신 표준 개발
국제 전기 통신 연합-통신 표준 부문 (ITU-T, International Telecommunication Union-Telecommunication Standardization Sector)	통신 산업 표준 개발
유럽 전기 통신 표준 협회 (ETSI, European Telecommunications Standards Institute)	유럽을 위한 통신 표준 개발

- 인터넷 표준 기구
 - 인터넷 소사이어티(ISOC, Internet Society)
 - 상위 수준 활동 담당
 - 인터넷 관리, 개발, 홍보
 - 다른 기구에 재정적, 관리적 지원
 - 인터넷 아키텍쳐 위원회(IAB, Internet Architecture Board)
 - 인터넷 표준의 종합적 관리 및 개발

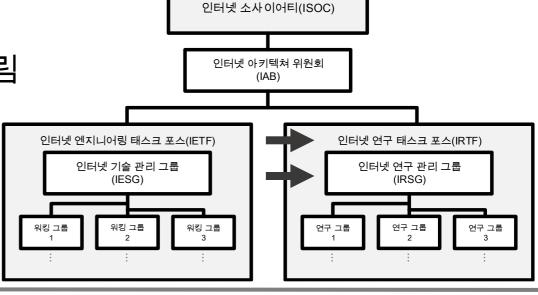


- 인터넷 표준 기구
 - 인터넷 엔지니어링 태스크 포스(IETF, Internet Engineering Task Force)
 - 여러 워킹 그룹으로 나뉘어 라우팅이나 보안 같은 특정 표준과 기술 개발

• 인터넷 기술 관리 그룹(IESG, Internet Engineering

Steering Group)

• IETF와 인터넷 표준 개발 절차를 직접 관리



- 인터넷 표준 기구
 - 인터넷 연구 태스크 포스(IRTF, Internet Research Task Force)
 - 인터넷, TCP/IP 기술 관련 장기 연구 담당
 - 워킹 그룹과 유사한 연구 그룹으로 구성

• 인터넷 연구 관리 그룹(IRSG, Internet Research Steering

Group)

• 전체 IRTF 의장과 함께 연구 활동에 대한 결정 내림

- 인터넷 등록 기관과 레지스트리
 - 인터넷 표준화의 측면
 - 인자 표준화
 - 보통 프로토콜은 동작 방식 제어 인자 포함
 - 원활한 통신을 위한 프로토콜과 프로토콜의 인자 값 결정
 - 전역 자원 할당과 식별자 유일성
 - 유일하게 할당되어야 하는 고정 값 존재
 - e.g., IP 주소, DNS(Domain Name System) 주소

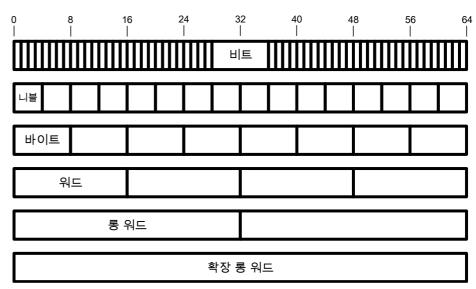
- 인터넷 등록 기관과 레지스트리
 - 인터넷 중앙 등록 기관
 - 인터넷 번호 할당 관리 기관(IANA, Internet Assigned Numbers Authority)
 - 인터넷과 관련된 번호를 관리하는 기관
 - e.g., IP 주소, 포트 번호
 - 인터넷 이름 및 번호 할당 기관(ICANN, Internet Corporation for Assigned Names and Numbers)
 - 중앙 등록 작업을 공식적으로 책임지는 기관
 - e.g., IP 주소와 도메인 네임 할당

• 인터넷 표준과 절차

- RFC(Request for Comments)
 - 표준화를 위해 제안된 기술에 대한 논평을 요청하는 메모
 - 초기 표준을 정의하는 문서
- RFC 분류
 - 현재 최고 사례
 - 공식 표준이 아닌 IETF에서 제공하는 문서
 - 표준 트랙 상태
 - 제안 표준, 초안 표준, 인터넷 표준으로 구분될 수 있는 문서
 - 정보 관련 상태
 - 정보나 주석을 제공하는 문서
 - 실험적 상태
 - 표준 트랙에 있지 않은 실험적인 표준을 제안하는 문서
 - 역사적 상태
 - 더 이상 쓰이지 않는 예전 표준인 문서

• 인터넷 표준화 절차

- 1. 인터넷 초안(ID, Internet Draft) 출판
- 2. IETF 피드백에 의해 개정된 ID는 제안 표준이 됨
- 3. 2개 이상의 다른 코드로 개발된 독립적 동작을 한다면 추안 표준이 됨
- 4. 오래도록 널리 사용되는 경우엔 인터넷 표준이 됨
 - 이 때 STD(Standard, 표준) 번호를 부여 받음


목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조

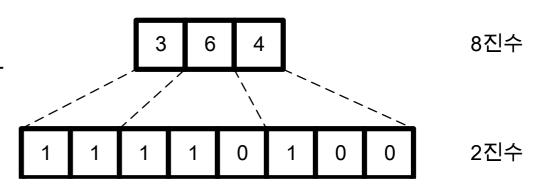
• 2진 정보

- 2진 정보 표현
 - 정의
 - 컴퓨터 기본 구성 요소는 비트(bit: binary digit)
 - 특징
 - 비트가 오직 두 상태(0 또는 1)로 존재하기 때문에, 특정 값을 정확히 표현할 수 있다는 장점

비트 수	표현 용어
1	비트 / 숫자 / 플래그
4	니블
8	바이트 / 옥텟 / 문자
16	더블 바이트 / 워드
32	더블 워드 / 롱 워드
64	확장 롱 워드

- 진수 표현
 - 10진수
 - 0~9를 가지고 수를 표현
 - e.g., 2진수 11010011에서 10진수 211로의 변환

2진수	1	1	0	1	0	0	1	1
2의 지수승	7	6	5	4	3	2	1	0
각 숫자의 자리값	128	64	32	16	8	4	2	1
각 숫자의 실제 값	128	64	0	16	0	0	2	1
중간 합(오른쪽으로)	128	192	192	208	208	208	210	211

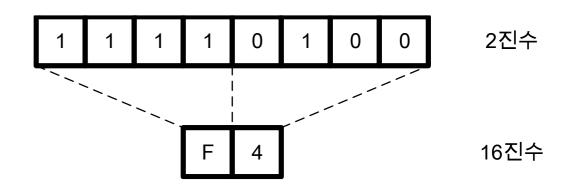

- 진수 표현
 - 8진수
 - 0~7을 가지고 수를 표현
 - e.g., 2진수 11110100에서 8진수 364로의 변환

2진수: 11110100

11110100을 세 개씩(3비트로) 그룹화

- -> (11)(110)(100)
- -> (2+1)(4+2+0)(4+0+0)
- -> (3)(6)(4)

8진수: 364


- 진수 표현
 - 16진수
 - 0~9, A~F를 가지고 수를 표현
 - e.g., 2진수 11110100에서 16진수 F4로의 변환

2진수: 11110100

11110100을 네 개씩(4비트로) 그룹화

- -> (1111)(0100)
- -> (8+4+2+1)(0+4+0+0)
- **->** (15)(4)
- -> F4

16진수: F4

• 진수 변환표

2진수	8진수	16진수	10진수
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7

2진수	8진수	16진수	10진수
1000	-	8	8
1001	-	9	9
1010	-	Α	-
1011	-	В	-
1100	-	С	-
1101	-	D	-
1110	-	E	-
1111	-	F	-

- •불 논리와 논리 함수
 - 불 논리(Boolean Logic)
 - 참과 거짓, 1과 0 같은 2진 값을 다루는 논리
 - •불 논리 함수
 - 불 논리를 이용하여 표현되는 함수
 - 입력 값이 참인지 거짓인지에 따라 출력 값 결정
 - 논리 부정(NOT 함수)
 - 입력 값의 반대 상태가 출력 값

입력	출력
0	1
1	0

- •불 논리와 논리 함수
 - •불 논리 함수
 - 논리합(AND 함수)
 - 모든 입력 값이 참일 때만 출력 값이 참
 - 논리곱(OR 함수)
 - 입력 값 중 하나만 참이면 출력 값이 참
 - 배타적 논리합(XOR 함수)
 - 입력 값이 다 다른 경우에만 출력 값이 참

입력 1	입력 2	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

•불 논리와 논리 함수

- 비트 마스킹(Bit Masking)
 - OR로 비트 그룹 켜기

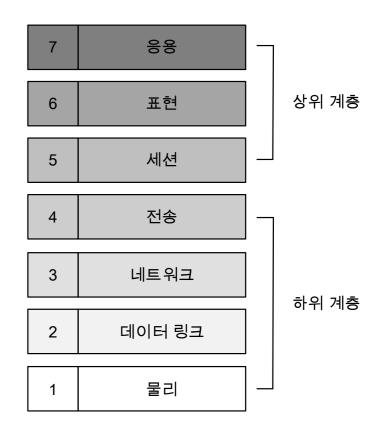
입력	1	0	1	0	0	1	0	1	1	0	1	0
마스크	0	0	0	1	1	1	1	1	1	0	0	0
OR 연산 결과	1	0	1	1	1	1	1	1	1	0	1	0

• AND로 비트 그룹 끄기

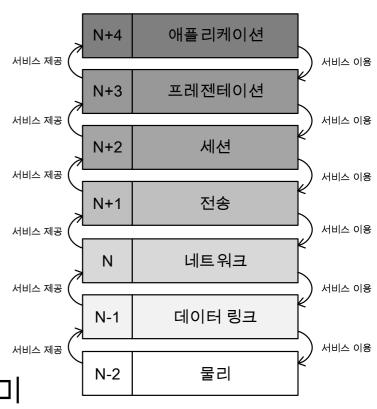
입력	1	0	1	0	0	1	0	1	1	0	1	0
마스크	1	1	1	0	0	0	0	0	0	1	1	1
AND 연산 결과	1	0	1	0	0	0	0	0	0	0	1	0

• XOR로 비트 반전

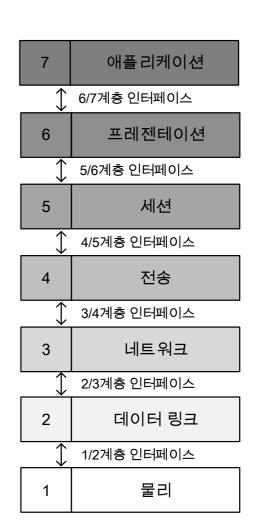
입력	1	0	1	0	0	1	0	1	1	0	1	0
마스크	0	0	0	1	1	1	1	1	1	0	0	0
XOR 연산 결과	1	0	1	1	1	0	1	0	0	0	1	0

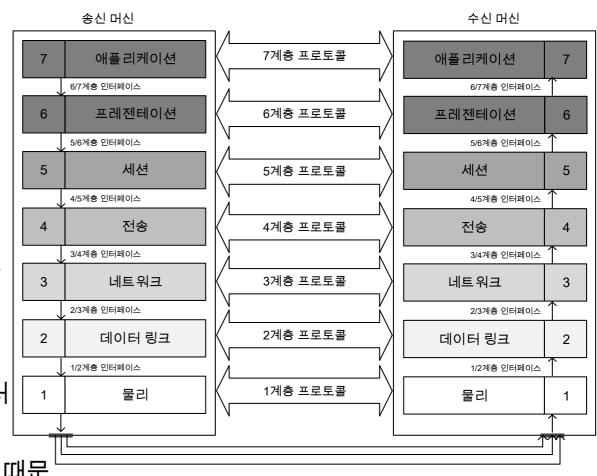

목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조


• OSI 참조 모델

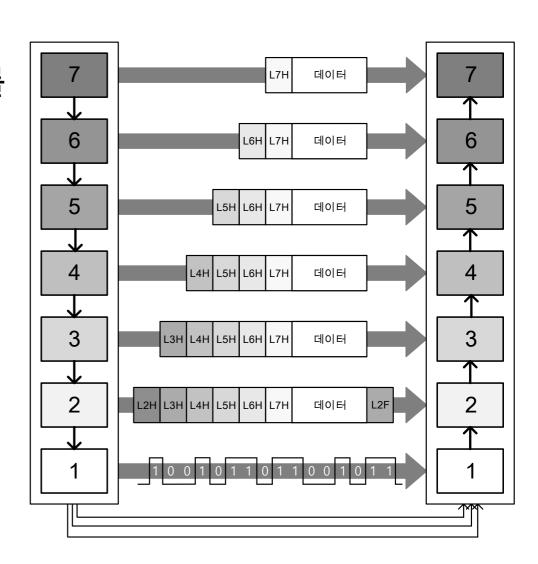
- OSI 참조 모델(Open Systems Interconnection Reference Model) 정의
 - 시스템 간의 원활한 통신을 위해 국제 표준화 기구(ISO)에서 제안한 통신 규약(Protocol)
- OSI의 역사
 - 국제 표준화 기구(ISO)와 국제 전신 전화 자문 위원회 (CCITT)에서의 네트워킹 모델 설명 문서들이 병합된 것이 OSI 참조 모델
 - 원래는 전 세계적으로 사용할 프로토콜 슈트 기반을 마련하기 위한 것이었기에, OSI 프로토콜 슈트라 불렸음
 - 하지만. TCP/IP 프로토콜이 널리 알려지면서 OSI 모델은 네트워킹 동작을 설명하는 도구로 자리잡음


- OSI 모델 계층
 - 하위 계층(1~4계층)
 - 컴퓨터를 위한 계층
 - 하드웨어 형태로 구현
 - 데이터 포매팅, 인코딩, 전송 담당
 - 상위 계층(5~7계층)
 - 사용자를 위한 계층
 - 소프트웨어 형태로 구현
 - 애플리케이션 구현 담당

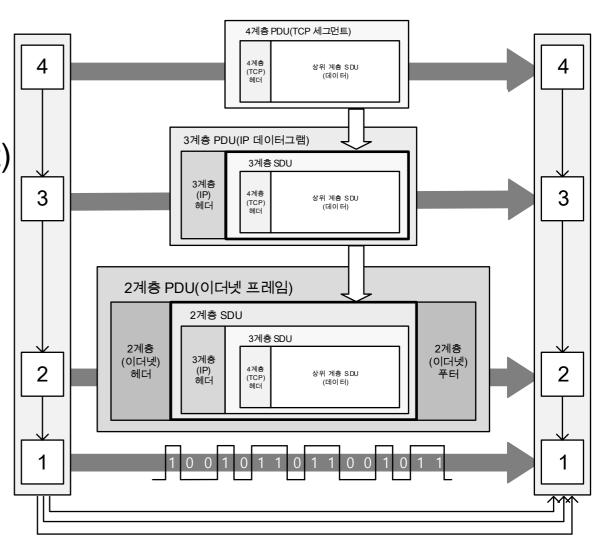

- OSI 모델 계층 용어
 - 계층 이름과 번호
 - e.g., 데이터 링크 계층, DLL, L2, 2계층은 모두 동일한 표현
 - N 표기법
 - 계층을 개별로 언급할 때 사용
 - e.g., N계층 기능, N계층 서비스
 - 실체(entity)와 기능(function)
 - 그 계층에서의 동작이나 작업을 의미
 - 설비(facilities)와 서비스(services)
 - 상위 계층에게 제공하는 것
 - 각 계층은 상위 계층에 서비스 제공, 하위 계층의 서비스 이용
 - 네트워크 스택
 - 모델의 전체 계층 또는 기술의 모음 의미

- OSI 모델 계층 용어
 - 인터페이스: 수직 통신
 - 인접 계층 간의 수직적인 통신 방식
 - e.g., 2/3계층 인터페이스는 2, 3계층 연결
 - 수직 통신이 일어나는 이유
 - 같은 머신 내에서 데이터 전달이 되어야하기 때문
 - 인터페이스 통신 예시
 - 상위 계층의 하위 계층 서비스 이용
 - 하위 계층의 상위 계층에 서비스 제공
 - 데이터의 양방향 전송
 - 송신은 하위 계층으로 이루어지며 캡슐화
 - 수신은 상위 계층으로 이루어지며 역캡슐화

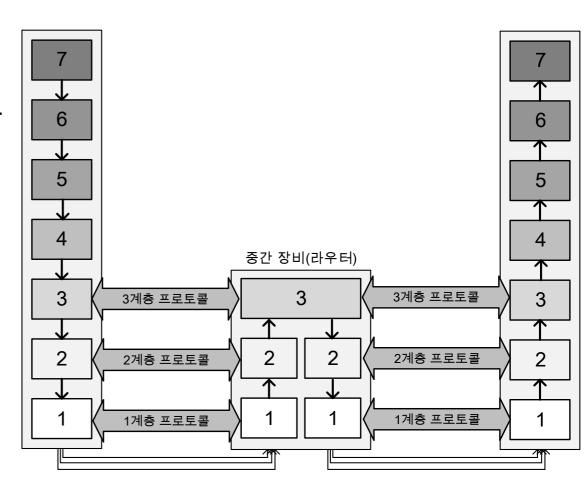
- OSI 모델 계층 용어
 - 프로토콜: 수평 통신
 - 동일 계층에서의 수평적인 통신 방식
 - 수평 통신이 일어나는 이유
 - 다른 머신으로 데이터 전달이 되어야 하기 때문
 - 각 계층이 연결되었다 할 수 있는 이유
 - 1계층까지 도달한 데이터 가 물리적 회선을 타고 다른 머신으로 이동하여 동일 계층까지 전달되기 때문



• OSI 참조 모델 개념

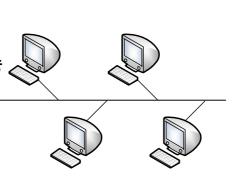

- 데이터 캡슐화
 - 외부로부터 데이터 정보를 숨기려고 헤더와 푸터를 삽입하는 절차

표기 방법	설명
L	계층
Н	헤더
F	푸터

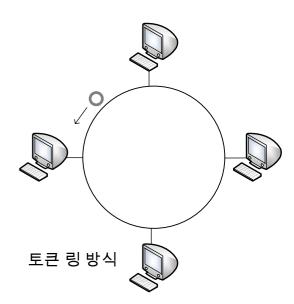

e.g, L7H는 7계층 헤더 의미

- 데이터 캡슐화
 - 프로토콜 데이터 유닛 (PDU, Protocol Data Unit)
 - 동일 계층 간 교환되는 전체 데이터 양
 - 서비스 데이터 유닛 (SDU, Service Data Unit)
 - 상위, 하위 계층 간 전달되는 실제 데이터

- 메시지 라우팅
 - 라우팅(Routing)
 - 한 장비에서 다른 장비로 포워딩하는 과정
 - 포워딩(Forwarding)
 - 한 네트워크 내에서 메시지를 다른 네트워크 로 전송하는 과정
 - 스위칭(Switching)이라 부르기도 함


목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조


- 물리 계층(1계층, Physical Layer)
 - 데이터를 전기 신호로 바꾸어 전송하는 계층
 - 데이터 단위: 비트(Bit)
 - 물리 계층 기능
 - 하드웨어 명세 정의
 - 하드웨어 장비 동작의 세부 사항은 대부분 물리 계층 기능
 - 인코딩과 신호
 - 비트 데이터를 네트워크 신호로 인코딩하거나 변환
 - 데이터 송수신
 - 인코딩 된 데이터를 실제로 송수신
 - 물리적 토폴로지(Topology) 설계
 - 토폴로지란 컴퓨터 네트워크 요소들을 물리적으로 연결한 방식
 - e.g., 그물 형태, 스타 형태, 링 형태, 버스 형태 등

- 데이터 링크 계층(2계층, Data Link Layer)
 - 데이터를 신뢰할 수 있는 링크로 변환하여 전송하는 계층
 - 데이터 단위: 프레임(Frame)
 - 데이터 링크 계층 기능
 - 데이터 프레이밍(Data Framing)
 - 데이터를 송신하기 위한 최종 캡슐화 작업
 - 에러 제어(Error Control)
 - 데이터 수신 시 역캡슐화 과정에서 에러 처리
 - 흐름 제어(Flow Control)
 - 송신 및 수신 데이터 처리 속도가 다를 때 일어나는 문제를 보완하기 위한 흐름 제어
 - e.g., 제한된 버퍼 길이로 인한 데이터 손실

- 데이터 링크 계층(2계층, Data Link Layer)
 - 데이터 링크 계층 기능
 - 논리적 연결 제어(LLC, Logical Link Control)
 - 네트워크 계층에 서비스 제공
 - 에러 제어 및 흐름 제어 담당
 - 매체 접근 제어(MAC, Media Access Control)
 - 공유 매체에 대한 접근 통제
 - 이더넷 방식
 - CSMA/CD 프로토콜 사용
 - 정해진 순서 없이 통신
 - 충돌 발생 시 데이터 재전송 ¿
 - 토큰 링 방식
 - 토큰 전달 방법 사용
 - 토큰을 가진 순서대로 통신
 - 충돌 발생하지 않음

- 네트워크 계층(3계층, Network Layer)
 - 데이터 전송을 위한 최적의 경로를 제공하는 계층
 - 데이터 단위: 패킷(Packet)
 - 네트워크 계층 기능
 - 논리적 주소 지정
 - 네트워크 장비들은 논리적 주소를 가지며, 3계층 주소라 부름 • e.g., IP 주소
 - 라우팅 네트워크
 - 패킷을 최종 목적지가 있는 네트워크로 전달하기 위한 최적의 경로 결정
 - 데이터그램 캡슐화
 - 전송 계층에서 받은 메시지에 헤더를 붙여 캡슐화 한 데이터그램(패킷) 생성

- 네트워크 계층(3계층, Network Layer)
 - 네트워크 계층 기능
 - 단편화와 재조합
 - 송신 시 데이터가 큰 경우, 패킷을 단편화하여 데이터 링크 계층으로 전달
 - 수신 시 단편화 된 패킷을 받는 경우, 이를 재조합하여 전송 계층으로 전달
 - 에러 처리와 진단
 - 네트워크나 장비 상태 정보를 교환할 수 있도록 하는 특수 프로토콜 사용
 - e.g., IP, ICMP(Internet Control Message Protocol)

- 전송 계층(4계층, Transport Layer)
 - 데이터를 전송하는 계층
 - 데이터 단위: 세그먼트(Segment), 데이터그램(Datagram)
 - 전송 계층 기능
 - 프로세스 수준 주소 지정
 - 소프트웨어 프로그램 구분을 위해 사용
 - e.g., 포트 번호
 - 다중화와 역다중화
 - 다중화란, 송신할 데이터를 하나의 데이터 스트림으로 결합하는 것
 - 역다중화란, 수신한 데이터 스트림을 각 프로세스로 전달하는 것
 - 단편화, 패키징, 재조합
 - 대량의 데이터를 송신할 때 단편화
 - 단편화 된 데이터를 받았을 때는 데이터 재조합

- 전송 계층(4계층, Transport Layer)
 - 전송 계층 기능
 - 연결 수립, 유지, 종료
 - 연결형 프로토콜은 연결 수립
 - 데이터 전송하는 동안 연결 유지
 - 전송이 종료되면 연결 종료
 - 승인과 재전송
 - 안정적인 데이터 전달을 위해 데이터 전송 시 승인과 재전송 타이머 시작
 - 데이터를 수신하면 수신자는 승인 정보 전송
 - 데이터가 타이머 만료 시간까지 오지 않을 경우 데이터 재전송
 - 흐름 제어
 - 전송률이 낮은 장비의 속도에 맞춰 데이터 흐름 제어

- 세션 계층(5계층, Session Layer)
 - 네트워크상 양쪽 연결을 관리하는 계층
 - 데이터 단위: 메시지(Message)
 - 세션 계층 기능
 - 세션 생성 및 관리
 - e.g., TCP/IP 세션을 만들고 없애는 과정
 - 동기화
 - 요청과 결과가 동시에 일어난다는 의미
 - 데이터 전송 시 동기점(검사점)을 제공하여 오류 발생 시 데이터 재전송 혹은 복구 가능

- 표현 계층(6계층, Presentation Layer)
 - 전송하는 데이터의 표현을 다루는 계층
 - 데이터 단위: 메시지(Message)
 - 표현 계층 기능
 - 버역
 - 컴퓨터 간의 차이에 따라 데이터를 서로 다른 방법으로 표현
 - 압축
 - 데이터 처리율 향상을 위한 압축
 - 암호화
 - 데이터 보안을 보장하기 위한 암호화

- 응용 계층(7계층, Application Layer)
 - 사용자의 실제 수행 기능을 구현하는 계층
 - 데이터 단위: 메시지(Message)
 - 응용 계층 기능
 - 다양한 정보 처리 및 서비스 제공
 - 메일 전송과 저장, 파일 전송, 웹 사이트 조회 등

OSI 참조 모델 계층

• OSI 모델 계층 요약표

그룹	#	계층 이름	핵심 역할	데이터 단위	주요 프로토콜과 기술
하위 계층	1	물리	인코딩과 신호 처리, 물리적 데이터 전송	비트	대부분의 데이터 링크 계층 기술을 위한 기술들
	2	데이터 링크	LLC, MAC, 데이터 프레이밍, 주소 지정, 에러 탐지와 처리, 물리적 토폴로지	프레임	SLIP, PPP 등
	3	네트워크	논리적 주소 지정, 라우팅, 데이터그램 캡슐화, 단편화와 재조합, 에러 처리와 진단	패킷	IP, IPv6, IPsec 등
	4	전송	프로세스 수준 주소 지정, 다중화 와 역다중화, 연결, 분할과 재조 합, 승인과 재전송, 흐름 제어	세그먼트 /데이터그램	TCP, UDP 등
상위 계층	5	세션	세션 수립, 유지, 종료	메시지	소켓 등
	6	표현	데이터 번역, 압축과 암호화		SSL 등
	7	응용	사용자 애플리케이션 서비스		DNS, DHCP, SMTP 등

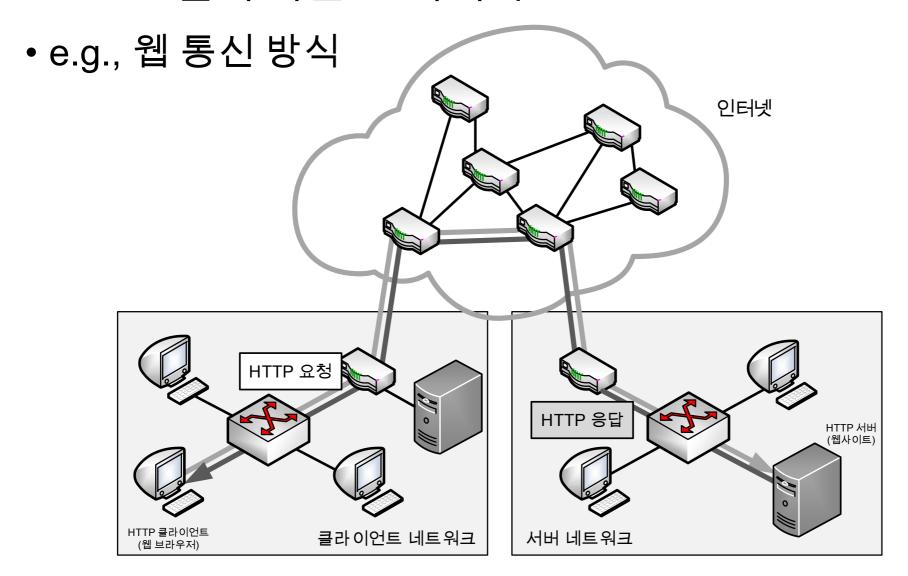
목 차

- I 1부 네트워킹 기본
 - 네트워크 소개, 특성, 유형
 - 네트워크 성능 문제와 개념
 - 네트워크 표준과 기구
 - 데이터 표현 방식과 컴퓨팅 수학
- I 2부 OSI 참조 모델
 - OSI 참조 모델 관련 이슈와 개념
 - OSI 참조 모델 계층
- I 3부 TCP/IP 프로토콜 슈트와 구조
 - TCP/IP 프로토콜 슈트와 구조

• TCP/IP 개요

- 미국 국방부 고등 연구 계획국(DARPA, Defense Advanced Research Projects Agency)에서 알파넷(ARPAnet) 설계
- 알파넷을 보완하여 TCP(Transmission Control Program) 개발
 - 현재의 TCP와는 다른 의미
- TCP 기능을 분리하여 TCP/IP(Transmission Control Protocol/ Internet Protocol) 개발

- TCP/IP 개요
 - TCP/IP 정의
 - 전송 제어 프로토콜과 인터넷 프로토콜로 이루어진 프로토콜 슈트
 - 전송 제어 프로토콜(TCP, Transmission Control Protocol)
 - 데이터를 신뢰성 있게 전달하기 위해 만들어진 약속
 - 인터넷 프로토콜(IP, Internet Protocol)
 - 인터넷에서 컴퓨터 위치를 찾아 데이터를 전송하기 위해 지켜야 할 약속

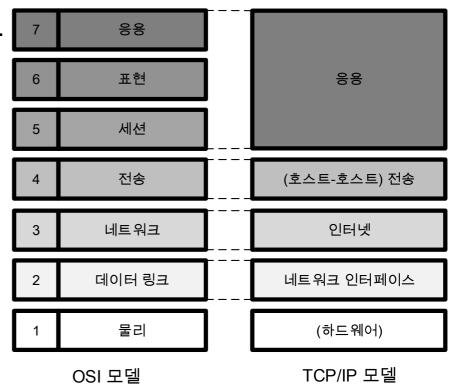

• TCP/IP 개요

- TCP/IP 장점
 - 통합 주소 지정 체계
 - 각 장비가 유일한 주소를 가짐
 - 라우팅을 위한 설계
 - 정보 교환 및 효율적인 정보 흐름 관리
 - 하부 네트워크와의 독립성
 - 다양한 네트워크를 혼합하여 TCP/IP로 연결 가능
 - 프로토콜의 확장성
 - 작은 네트워크에서 거대 인터네트워크로 성장
 - 표준과 개발 절차 공개
 - TCP/IP는 공개 표준이며, 누구나 개발에 참여 가능
 - 보편성
 - 모든 사람들이 이미 TCP/IP 프로토콜 이용

• TCP/IP 서비스

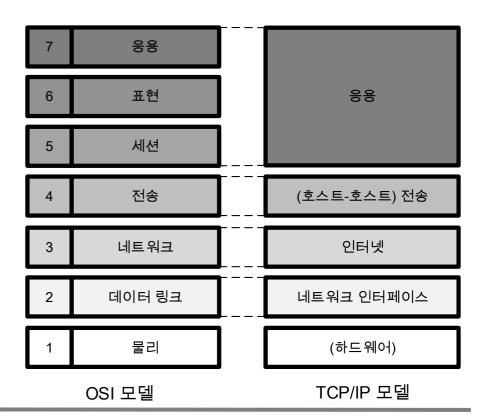
- TCP/IP는 OSI 모델처럼 상위 계층에 서비스 제공
- 다른 프로토콜에 제공하는 서비스
 - TCP/IP 프로토콜이 구현하는 핵심 기능으로 구성
 - 네트워크 계층의 IP는 주소 지정, 단편화 같은 기능 제공
 - 전송 계층의 TCP와 UDP는 데이터 캡슐화, 장비 연결 기능 제공
- 최종 사용자 서비스
 - 사용자가 TCP/IP 네트워크를 이용하기 위해 실행하는 애플리케이션 동작을 도움
 - 응용 계층의 HTTP는 하위 계층의 서비스 이용

• TCP/IP 클라이언트/서버 구조

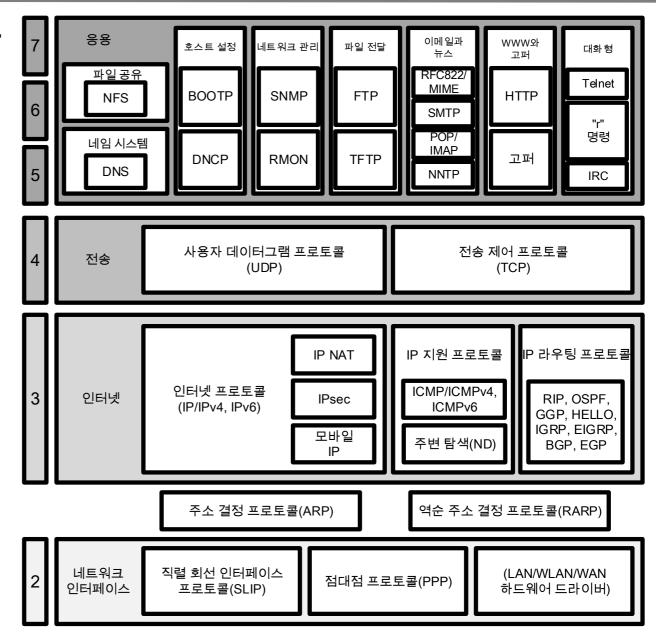


• TCP/IP 클라이언트/서버 구조

- 하드웨어 역할
 - 장비가 클라이언트 또는 서버로 동작하는지 여부
- 소프트웨어 역할
 - 프로토콜 소프트웨어 구성 요소가 클라이언트 또는 서버로 동작하는지 여부
- 트랜잭션 역할
 - 트랜잭션이란 특정 통신을 위해 컴퓨터 시스템이 완료해야 하는 처리 동작 의미
 - 장비와 프로그램이 특정 데이터를 교환할 때 클라이언트 또는 서버 역할을 하는지 여부


• TCP/IP 모델

- 1계층은 하드웨어 장비 존재
- 네트워크 인터페이스 계층(Network Interface Layer)
 - OSI 참조 모델의 데이터 링크 계층에 해당하는 계층
 - 인접 네트워크 간 신뢰성 있는 7 데이터 전송 담당
- 인터넷 계층(Internet Layer)
 - OSI 참조 모델의 네트워크 계층에 해당하는 계층
 - 호스트 간 라우팅 기능 담당



• TCP/IP 모델

- 호스트 간 전송 계층(Host-to-Host Transport Layer)
 - OSI 참조 모델의 전송 계층에 해당하는 계층
 - 특정 출발지와 목적지 주소를 식별하는 작업 담당
- 응용 계층(Application Layer)
 - OSI 참조 모델의 5~7계층을 포함하는 계층
 - 포트 번호를 사용한 응용 프로그램 동작 담당

• TCP/IP 프로토콜

Thanks!

김 지 혜 (jihye@pel.sejong.ac.kr)