2022/04/04, 2022 네트워크 세미나

TCP/IP 완벽가이드

- II-7부 TCP/IP 라우팅 프로토콜 -

정 재 형(jahhyeong@pel.sejong.ac.kr) 세종대학교 프로토콜공학연구실

목 차

- 라우팅 프로토콜
- 라우팅 정보 프로토콜(RIP)
- 최단 경로 우선 프로토콜(OSPF)

목 차

- 라우팅 프로토콜
- 라우팅 정보 프로토콜(RIP)
- 최단 경로 우선 프로토콜(OSPF)

- 정의
 - 라우팅
 - 어떤 네트워크 안에서 통신 데이터를 보낼 때 최적의 경로를 선택하는 과정
 - OSI 참조 모델의 3계층에서 하는 모든 기능을 말함
 - 라우팅 프로토콜
 - 라우터 간 통신 방식을 규정하는 통신 규약

• 라우팅 프로토콜 구조

- 핵심 구조
 - 중앙 관리식 구조 (2계층 구조)
 - 핵심 라우터
 - 인터네트워크에 대해 충분히 알고 있는 적은 수의 라우터
 - 핵심 라우터 간의 정보 교환
 - 게이트웨이 간 프로토콜(GGP, Gateway-to-Gateway Protocol) 사용
 - 비핵심 라우터
 - 핵심 라우터의 주변에 위치하며 일부 라우팅 정보만을 가지는 라우터
 - 핵심 라우터와 정보 교환
 - 외부 게이트웨이 프로토콜(EGP, Exterior Gateway Protocol) 사용
 - 한계
 - 인터넷이 성장함에 따라 처리해야할 라우팅 정보가 증가하는 것을 감당하지 못함

• 라우팅 프로토콜 구조

- 자율 시스템(AS, Autonomous System) 구조
 - 탈중앙 구조
 - 인터넷을 자율 시스템이라는 독립된 그룹의 집합으로 취급함
 - 자율 시스템은 특정 기관이나 관리 단체에서 통제하는 라우터와 네트워크 모음으로 구성됨

• 특징

- AS 간에 라우팅이 일어남
- 각 AS가 자신에게 맞는 라우팅 방식을 선택할 수 있음
 - 전체 인터네트워크의 효율 상승
- 각 AS는 전체 인터네트워크에서 고유한 번호를 가짐

• 라우팅 프로토콜 구조

- 자율 시스템 구조
 - 라우팅 프로토콜 종류
 - 내부 라우팅 프로토콜
 - AS 내부에서 라우팅 정보를 교환할 때 사용
 - 외부 라우팅 프로토콜
 - AS 간 라우팅 정보를 교환할 때 사용
 - AS 내부 라우팅을 위해 쓰이기도 하지만 주로 AS 간 정보 교환을 다룸
 - 라우터 종류
 - 내부 라우터
 - 같은 AS에 있는 라우터에만 접속 가능
 - 내부 라우팅 프로토콜 사용
 - 경계 라우터
 - AS 내부뿐만 아니라 다른 AS에 있는 라우터와도 통신 가능
 - 내부/외부 라우팅 프로토콜 모두 사용

• 라우팅 프로토콜 구조

• 자율 시스템 구조 R2C R2E R₂A R2D R3 R1B 자율 시스템 2 R1C R1A 자율 시스템 3 자율 시스템 1

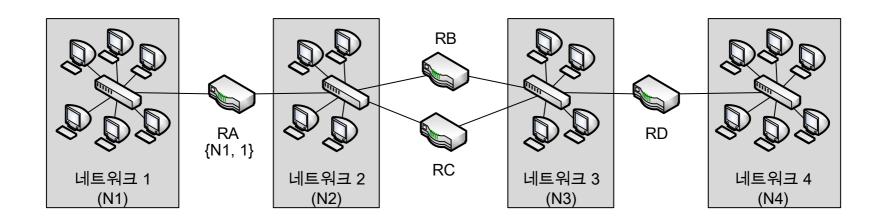
- 라우팅 프로토콜 구분 기준
 - 알고리즘
 - 프로토콜이 네트워크 간의 최적의 경로를 결정하거나 라우팅 정보를 공유하는 방법
 - 척도
 - 특정 경로의 효율을 측정할 때 사용하는 비용

- 라우팅 프로토콜 알고리즘 종류
 - 거리 벡터 라우팅 프로토콜 알고리즘
 - 네트워크 사이의 거리에 따라 경로 선택
 - 두 네트워크 사이의 홉 수를 거리 척도로 사용
 - e.g., RIP(Routing Information Protocol)
 - 링크 상태 라우팅 프로토콜 알고리즘
 - 최단 경로 우선 방식이라고도 불림
 - 두 네트워크 간의 가장 짧은 경로를 동적으로 측정
 - 다른 라우터와 링크 상태 정보를 주고 받아 인터네트워크 지도를 정기적으로 갱신
 - e.g., OSPF(Open Shortest Path First)

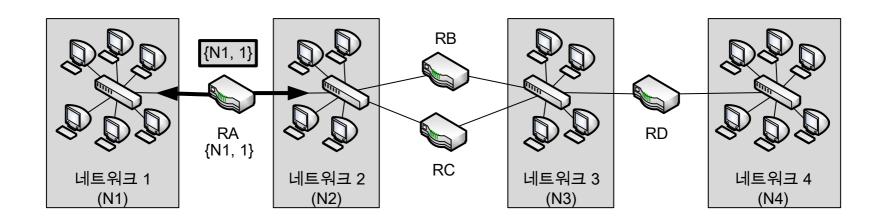
- 라우팅 프로토콜 알고리즘 종류
 - 혼합 라우팅 프로토콜 알고리즘
 - 거리 벡터 라우팅 프로토콜 알고리즘과 링크 상태 라우팅 프로토콜 알고리즘을 혼합한 기능을 가지는 혼합 프로토콜
 - 진보된 거리 벡터 알고리즘
 - e.g., EIGRP(Enhanced Interior Gateway Routing Protocol)
 - 완전히 다른 알고리즘을 사용하는 프로토콜
 - 경로 벡터 알고리즘
 - e.g., BGP(Border Gateway Protocol)

목 차

- 라우팅 프로토콜
- 라우팅 정보 프로토콜(RIP)
- 최단 경로 우선 프로토콜(OSPF)

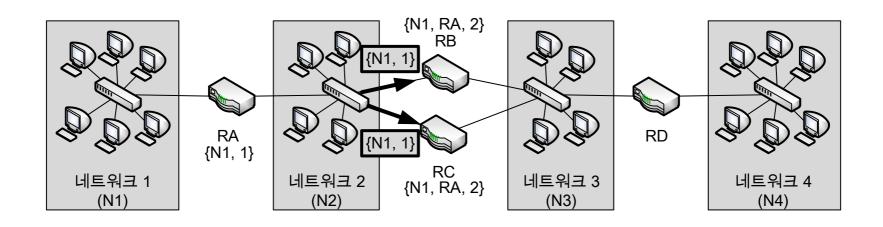

- 라우팅 정보 프로토콜(RIP, Routing Information Protocol)
 - 거리 벡터 알고리즘을 사용하는 가장 간단한 내부 라우팅 프로토콜
 - 특징
 - 직관적이며 구현이 쉬움
 - 라우터 처리 시간이 짧음
 - 작은 자율 시스템에서 사용하기 용이
 - 목적지까지의 거리를 최대 15홉으로 한정
 - 매우 큰 AS에서 사용할 수 없음

• 버전

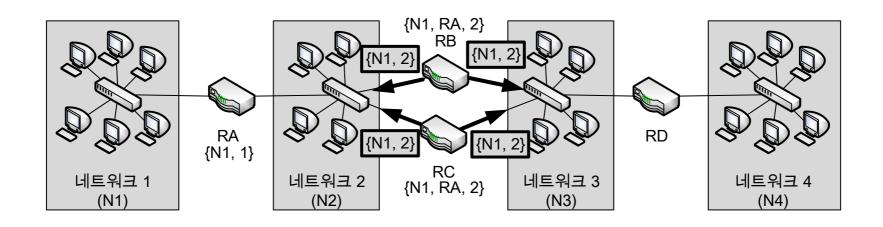

- RIP-1(RIP version 1)
 - 1988년 RFC 1058 "Routing Information Protocol"에서 정의
- RIP-2(RIP version 2)
 - 1998년 RFC 2453 "RIP Version 2"로 표준화
 - RIP를 위한 새로운 메시지 포맷 정의
 - 클래스 비사용 주소지정, 인증, 멀티캐스트 등 기능 추가
- RIPng(RIP next generation)
 - 1997년 RFC 2080 "RIPng for IPv6"에서 정의
 - IPv6에서 동작하기 위해 정의됨

- 경로 결정 알고리즘과 척도
 - 거리 벡터 라우팅 알고리즘 사용
 - 각 라우터가 정기적으로 경로 정보를 교환하여 라우팅 테이블 갱신
 - 주요 저장 정보
 - 네트워크나 호스트의 주소
 - 라우터에서 네트워크나 호스트까지의 거리
 - 라우터에서의 첫 번째 홉
 - 거리 척도로 홉 수 사용
 - RIP에서는 최대 15홉으로 한정

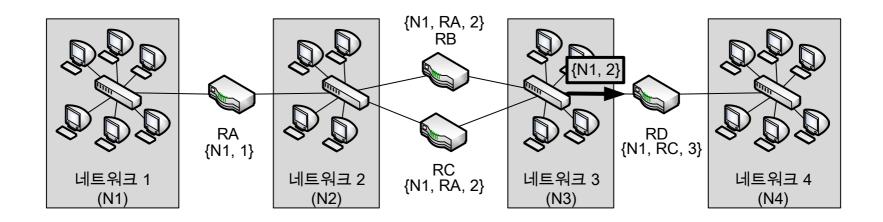
- 경로 결정 알고리즘
 - 라우팅 정보 전파 예시
 - 1. 라우터 RA가 켜지면 RA는 자신이 네트워크 N1과 N2에 직접 연결된 것을 알아채고 라우팅 테이블에 네트워크 N1에 비용 1로 갈 수 있다는 항목인 {N1, 1}을 저장

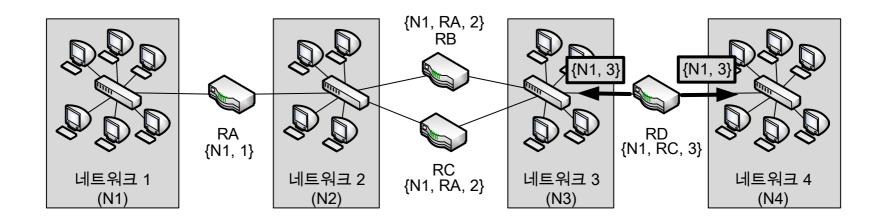


- 경로 결정 알고리즘
 - 라우팅 정보 전파 예시
 - 2. 라우터 RA는 RIP 메시지에 {N1, 1}을 실어 자신이 연결된 네트워크 N1과 N2로 전송
 - 3. 네트워크 N2의 라우터 RB, RC가 정보를 받음



• 경로 결정 알고리즘

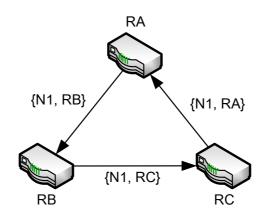

- 라우팅 정보 전파 예시
 - 4. 라우터 RB와 RC는 자신의 라우팅 테이블에 네트워크 N1 에 대한 정보가 있는지 살펴봄
 - 5. 네트워크 N1에 대한 정보가 없는 경우 라우터 RA 항목에 {N1, 2} 저장


- 경로 결정 알고리즘
 - 라우팅 정보 전파 예시
 - 6. 라우터 RB와 RC는 각각 자신이 연결된 네트워크 N2와 N3로 라우팅 테이블 전송
 - 7. 네트워크 N3의 라우터 RD가 정보를 받음

- 경로 결정 알고리즘
 - 라우팅 정보 전파 예시
 - 8. 라우터 RD는 라우팅 테이블을 조사하여 네트워크 N1에 대한 항목이 없는지 확인한 후 라우터 RB나 RC에 대한 {N1, 3}라는 항목 추가
 - RB, RC 어느 것에 대해서 항목을 생성해도 상관없음
 - 메시지를 먼저 보낸 라우터에 대한 항목 생성

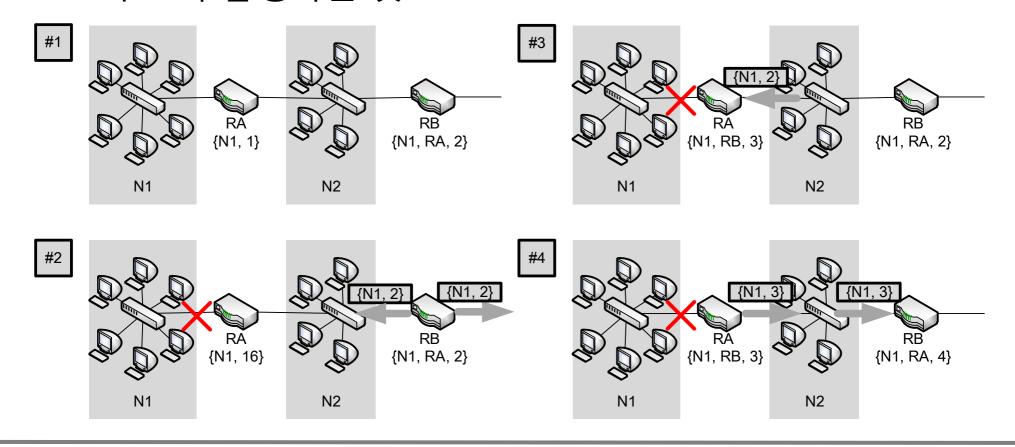
- 경로 결정 알고리즘
 - 라우팅 정보 전파 예시
 - 9. 라우터 RD가 네트워크 N4로 {N1, 3}을 전송하지만 수신할 라우터가 없음

• RIP 메시지


- UDP를 사용하여 전송함
 - RIP-1, RIP-2는 UDP 520번 포트 사용
 - RIPng는 UDP 521번 포트 사용
- 유형
 - RIP 요청 메시지
 - 라우터가 다른 라우터의 라우팅 테이블의 일부 또는 전부를 요청하는 메시지
 - RIP 응답 메시지
 - 라우팅 테이블의 일부 또는 전부를 전송하는 메시지
 - 요청에 대한 응답으로만 전송되는 것은 아님

- 경로 정보 갱신 방법
 - 갱신(Update) 타이머
 - 30초마다 만료됨
 - 만료되면 라우팅 테이블 전체를 RIP 응답 메시지에 실어 브로드캐스트 혹은 멀티캐스트
 - 만료(Timeout) 타이머
 - 180초마다 만료됨
 - 경로를 라우팅 테이블에 저장하는 시간을 한정
 - 해당 경로에서 RIP 응답 메시지를 받으면 타이머 초기화
 - RIP 응답 메시지가 오지 않는 경우 해당 경로의 거리를 16홉으로 바꾸어 곧 삭제할 것임을 알림

- 경로 정보 갱신 방법
 - 가비지 콜렉션(Garbage-Collection) 타이머
 - 120초마다 만료됨
 - 거리가 16홉으로 저장된 경로를 제거하기 위한 타이머
 - 만료되면 경로를 라우팅 테이블에서 삭제
 - 만료되기 전 해당 경로의 새 RIP 메시지가 도착하는 경우 삭제 중단 후 해당 경로를 다시 유효하다고 표시하여 갱신 타이머를 시작함
 - 트리거 갱신(Triggered Update)
 - 경로 상 변화가 있을 때 RIP 응답 메시지 전송


• 문제점

- 느리 수렴
 - 모든 라우터가 네트워크의 위치에 대한 같은 정보를 가지는 수렴 상황이 되기까지 오랜 시간이 걸림
- 라우팅 루프
 - 정보가 라우터 간 반복해서 전송되는 경우

• 문제점

- 무한 세기
 - 느린 수렴으로 인해 잘못된 경로 정보가 전송되어 라우팅 루프가 발생하는 것

• 문제점

- 작은 무한값
 - 느린 수렴 문제를 완화하기 위해 16이라는 작은 무한값 사용
 - 네트워크의 크기를 유연하게 확장할 수 없음
- 척도 문제
 - 거리 척도로 홉 수를 사용
 - 전송 속도를 고려하지 않음
 - 동적인 척도를 제공하기 힘듦
 - 실시간 데이터를 바탕으로 최적의 경로를 계산할 수 없음

- 해결 방안
 - 수평 분할
 - 무한 세기 문제를 방지함
 - RIP 응답 메시지 전송 시 해당 네트워크에서 얻은 정보는 전송하지 않음
 - 포이즌 리버스 수평 분할
 - 무한 세기 문제를 방지함
 - RIP 응답 메시지 전송 시 해당 네트워크에서 얻은 경로의 척도를 무한값인 16홉으로 설정함

• 해결 방안

- 트리거 갱신
 - 라우터가 자신의 경로에 대한 척도를 변경한 경우 즉시 RIP 응답 메시지를 보내 인접 라우터에게 알림
 - 응답 메시지를 받은 라우터는 라우팅 정보를 수정하고 수정사항을 바로 전송함

• 홀드 다운

- 네트워크가 도착 불가능하다는 정보를 수신 시 사용함
- 60초 또는 120초의 타이머 사용
- 타이머 작동 시간 동안 해당 경로에 대한 접근 가능 메시지를 거절함
- 일시적인 장애 발생 시 복구까지 상당한 지연 시간이 필요함

- 버전별 메시지 포맷
 - RIP-1
 - RIP-1 메시지 포맷

- 버전별 메시지 포맷
 - RIP-1
 - RIP-1 메시지 포맷

필드명	크기(바이트)	설명
명령	1	1 : RIP 요청 / 2 : RIP 응답
버전	1	1 : RIP 버전 1
0	2	예약된 필드. 모두 0으로 설정되어야 함
RIP 항목	20에서 500까지 20바이트씩 증가	RIP 메시지 본문은 1개에서 25개의 RIP 항목으로 이루어짐

- 버전별 메시지 포맷
 - RIP-1
 - RIP-1 RIP 항목

하위 필드명	크기(바이트)	설명
주소 유형 식별자	2	항목에 속한 주소의 유형을 식별하기 위한 필드로 IP는 2로 설정됨
0	2	예약된 필드이며 모두 0으로 설정되어야 함
IP 주소	4	라우터가 정보를 전달하는 경로의 주소
0	4	예약된 필드이며 모두 0으로 설정되어야 함
0	4	예약된 필드이며 모두 0으로 설정되어야 함
척도	4	IP 주소 필드가 지정하는 네트워크까지의 거리

• 버전별 메시지 포맷

- RIP-2
 - 특징
 - 클래스 비사용 주소지정 지원 및 서브넷 마스크 명세
 - 다음 홉 명세
 - 다음 홉 라우터를 명시하여 라우팅 효율을 높임
 - 인증
 - PlainText 방식 또는 MD5 사용
 - 경로 태그
 - 어떤 AS에서 정보를 얻었는지 식별
 - 멀티캐스팅 사용
 - 네트워크 부하를 줄이기 위해 브로드캐스트 대신 멀티캐스트 사용
 - 224.0.0.9 주소가 예약되어 있음

- 버전별 메시지 포맷
 - RIP-2
 - RIP-2 메시지 포맷

- 버전별 메시지 포맷
 - RIP-2
 - RIP-2 메시지 포맷

필드명	크기(바이트)	설명
명령	1	1 : RIP 요청 / 2 : RIP 응답
버전	1	2 : RIP 버전 2
0	2	예약된 필드이며 모두 0으로 설정되어야 함
라우팅 테이블 항목(RTEs, Routing Table Entries)	20에서 500까지 20바이트씩 증가	메시지 본문은 1개에서 25개의 라우팅 정보를 가짐. 각 라우팅 정보는 라우팅 테이블 항목(RTE)라고 부름

- 버전별 메시지 포맷
 - RIP-2
 - RIP-2 라우팅 테이블 항목

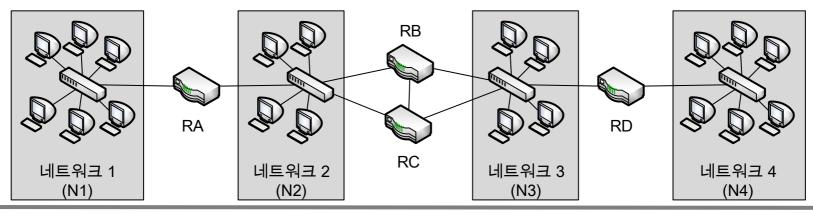
하위 필드명	크기(바이트)	설명
주소 유형 식별자	2	항목에 속한 주소의 유형을 식별하기 위한 필드. IP는 2
경로 태그	2	경로에 대한 추가 정보를 가짐
IP 주소	4	라우터가 정보를 전달하는 경로의 주소
서브넷 마스크	4	이 주소에서 사용하는 서브넷 마스크
다음 홉	4	광고하고 있는 네트워크로 가기 위해 사용할 다음 홉 장비 주소
척도	4	IP 주소 필드가 지정하는 네트워크까지의 거리

목 차

- 라우팅 프로토콜
- 라우팅 정보 프로토콜(RIP)
- 최단 경로 우선 프로토콜(OSPF)

- 최단 경로 우선 프로토콜(OSPF, Open Shortest Path First)
 - RIP의 문제점들을 해결하기 위해 개발된 최단 경로 우선 알고리즘을 사용하는 내부 라우팅 프로토콜
 - 특징
 - 네트워크의 현재 상태에 따라 경로를 동적으로 선택함
 - 평문과 MD5암호화를 이용한 인증 지원
 - 클래스 단위 주소지정, 서브넷 클래스 단위 주소지정, 클래스 비사용 주소지정 지원
 - 계층 토폴로지 생성 가능
 - 높은 비용과 복잡성

• 주요 개념


- 링크 상태 데이터베이스(LSDB, Link-State DataBase)
 - 네트워크나 다른 라우터로 향하는 링크와 링크의 비용을 방향 그래프의 형태로 저장함
 - 라우터는 LSDB를 사용하여 최단 경로 트리를 형성함
 - 자신에서 다른 라우터나 네트워크 사이의 링크를 보여줌
 - 모든 장소에 대한 최소 비용 경로를 찾음
- 링크 상태 광고(LSA, Link-State Advertisement)
 - 각 라우터가 알고 있는 정보를 다른 라우터에게 전해줄 때 사용하는 메시지

- •토폴로지 종류
 - OSPF 기본 토폴로지
 - 라우터 수가 적은 경우 전체 AS를 하나로 간주함
 - 특징
 - AS 내의 모든 라우터는 동등함
 - 각 라우터가 LSDB를 관리함
 - AS의 토폴로지를 그리기 위한 데이터가 저장됨
 - 라우터와 직접 연결된 라우터, 네트워크, 비용을 알 수 있음
 - 각 라우터는 LSA를 포함하는 갱신 메시지 교환을 통해 다른 라우터 들과 동일한 LSDB를 가짐

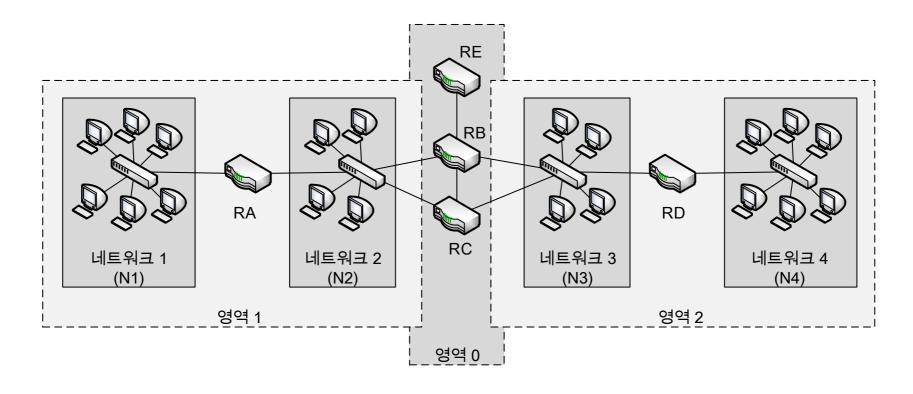
• 토폴로지 종류

- OSPF 기본 토폴로지
 - LSDB 예시
 - 표기
 - '●' 표시는 경로 비용
 - '0'은 비용 0을 의미함
 - 'R'은 라우터를 의미함
 - 'N'은 네트워크를 의미함

목적 라우터/	출발 라우터			출	발 너	트워.	3	
네트워크	RA	RB	RC	RD	N1	N2	N3	N4
RA					0	0		
RB			•			0	0	
RC		•				0	0	
RD							0	0
N1	•							
N2	•	•	•					
N3		•	•	•				
N4				•				

•토폴로지 종류

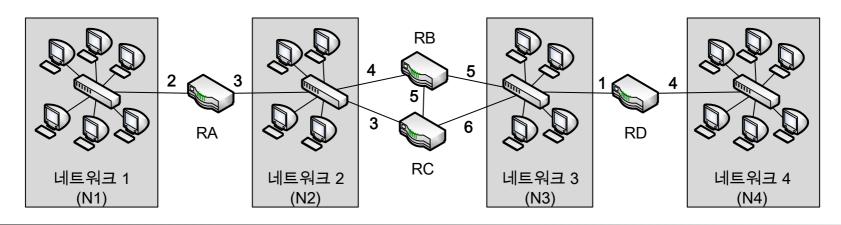
- 계층 토폴로지
 - 거대한 인터네트워크를 관리하기 위해 계층 구조 사용
 - 두 단계 계층 토폴로지가 생성됨
 - 낮은 계층
 - 영역 내의 연결을 의미함
 - 높은 계층 (백본, Backbone)
 - 영역을 연결하는 계층
 - 영역 0이라고 함


• 영역

- 서로 연결된 라우터와 네트워크로 이루어짐
- 각 영역에는 번호가 부여됨
- 각 영역 내의 라우터는 다른 영역과 독립적으로 관리됨
- 영역들이 논리적 백본(Backbone)을 통해 서로 연결되어 전체 AS의 라우팅 정보 공유

•토폴로지 종류

- 계층 토폴로지
 - 라우터의 종류
 - 내부 라우터
 - 한 영역 내에 있는 라우터에만 연결됨
 - 한 영역에 대한 LSDB만을 가짐
 - 영역 경계 라우터
 - 하나 이상의 영역에 연결됨
 - 자신이 속한 각 영역에 대한 LSDB 관리
 - 백본에도 참여함
 - 백본 라우터
 - 백본에 참여하는 라우터
 - 토폴로지에 대한 요약 정보를 백본으로 보냄


- •토폴로지 종류
 - 계층 토폴로지
 - 라우팅 예시

- 최단 경로 우선(SPF, Shortest Path First) 트리
 - 자신과 라우터나 네트워크 간의 최단 경로를 결정하기 위해 LSDB의 정보를 바탕으로 생성된 트리
 - 트리 계산이 끝나면 모든 라우터와 네트워크로 도착하는 데 드는 비용이 계산됨
 - 계산된 정보를 바탕으로 다음 홉 명세
 - 가장 짧은 경로만을 보여줌
 - LSDB가 변경되면 SPF 트리와 라우팅 정보를 다시 계산함

- 최단 경로 우선 트리
 - SPF 알고리즘 이용 예시
 - 라우터 RC의 SPF 트리 생성
 - 1. RC와 직접 연결된 장비 확인
 - 라우터 RB, 비용 5
 - 네트워크 N2, 비용 3
 - 네트워크 N3, 비용 6

목적 라우터	2	출발 급	<mark>라우</mark> 티	4	출발 네트워크			3
/네트워크	RA	RB	RC	RD	N1	N2	N3	N4
RA					0	0		
RB			5			0	0	
RC		5				0	0	
RD							0	0
N1	2							
N2	3	4	3					
N3		5	6	1				
N4				4				

• 최단 경로 우선 트리

- SPF 알고리즘 이용 예시
 - 라우터 RC의 SPF 트리 생성
 - 2. 첫 번째 단계 장비와 직접 연결된 장비 탐색
 - RB. 비용 5
 - 라우터 RC, 비용 5, 총 10
 - 네트워크 N2, 비용 4, 총 9
 - 네트워크 N3, 비용 5, 총 10
 - N2. 비용 3
 - 라우터 RA, 비용 0, 총 3
 - 라우터 RB, 비용 0, 총 3
 - 라우터 RC, 비용 0, 총 3
 - N3, 비용 6
 - 라우터 RB, 비용 0, 총 6
 - 라우터 RC, 비용 0, 총 6
 - 라우터 RD, 비용 0, 총 6

목적 라우터	Ž	출발 라우터		출	출발 네트워크		3	
/네트워크	RA	RB	RC	RD	N1	N2	N3	N4
RA					0	0		
RB			5			0	0	
RC		5				0	0	
RD							0	0
N1	2							
N2	3	4	3					
N3		5	6	1				
N4				4				

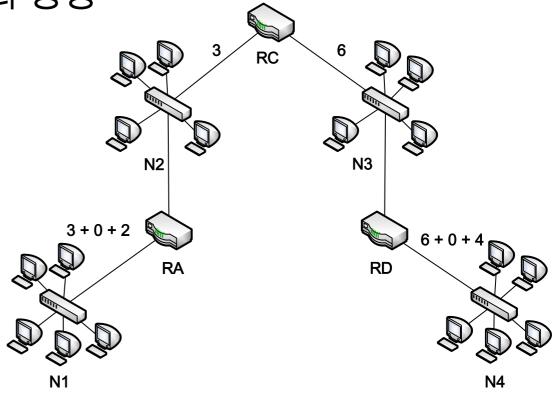
- 최단 경로 우선 트리
 - SPF 알고리즘 이용 예시
 - 라우터 RC의 SPF 트리 생성
 - 3. 순환하는 경로와 비용이 높은 경로 삭제
 - N2, 비용 3
 - 라우터 RA, 비용 0, 총 3
 - N3, 비용 6
 - 라우터 RD, 비용 0, 총 6

목적 라우터	2	출발 리	마우 E	터 출빌		발 너	<u>나</u> 네트워크	
/네트워크	RA	RB	RC	RD	N1	N2	N3	N4
RA					0	0		
RB			5			0	0	
RC		5				0	0	
RD							0	0
N1	2							
N2	3	4	3					
N3		5	6	1				
N4				4				

• SPF 트리

- SPF 알고리즘 이용 예시
 - 라우터 RC의 SPF 트리 생성
 - 4. 이전 단계에서 찾은 장비에 대해 계속 탐색
 - 라우터 RA, 비용 3
 - 네트워크 N1, 비용 2, 총 5
 - 라우터 RD, 비용 6
 - 네트워크 N4, 비용 4, 총 10

목적 라우터	Ž	출발 :	발 라우터		출발 네트워크		3	
/네트워크	RA	RB	RC	RD	N1	N2	N3	N4
RA					0	0		
RB			5			0	0	
RC		5				0	0	
RD							0	0
N1	2							
N2	3	4	3					
N3		5	6	1				
N4				4				


• SPF 트리

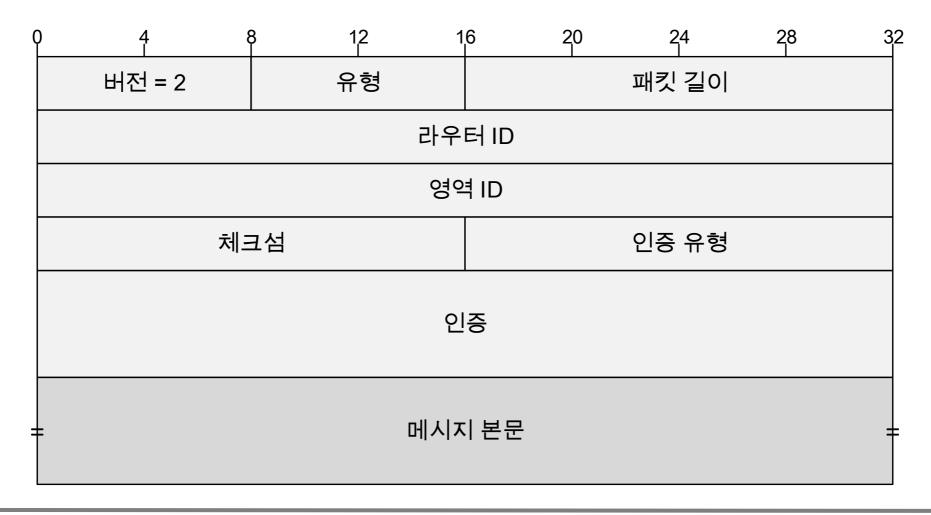
• SPF 알고리즘 이용 예시

• 라우터 RC의 SPF 트리 생성

5. 계산된 SPF 트리

목적 네트워크	비용	다음 홉
N1	5	RA
N2	3	(로컬)
N3	6	(로컬)
N4	10	RD

- 일반 동작
 - RIP와 달리 UDP를 이용하지 않고 직접 IP 데이터그램을 생성하여 IP 프로토콜 번호 89번으로 전송함
 - 메시지 유형


메시지 유형	설명
Hello	주변 장비 사이의 관계를 맺고 OSPF 관련 인자를 주고받음
데이터베이스 설명	AS나 영역의 토폴로지에 대한 LSDB를 전달하기 위해 사용. 송신장비를 마스터(Master), 수신장비를 슬레이브(Slave)라고 함
링크 상태 요청	LSDB 일부에 대한 갱신 정보를 요청하기 위해 사용
링크 상태 갱신	LSDB에 있는 특정 링크의 상태를 알리기 위해 사용
링크 상태 승인	링크 상태 갱신 메시지 수신을 알리기 위해 사용

• 일반 동작

- 메시지 교환 과정
 - 1. Hello 메시지 송신
 - 라우터가 동작을 시작할 때 발송하여 주변에 OSPF를 실행하는 라우터가 있는지 확인
 - 이후 주기적으로 Hello 메시지를 송신하여 새로운 장비 탐색
 - 2. 데이터베이스 설명 메시지 송신
 - 인접 노드가 새 라우터를 발견하면 데이터베이스 설명 메시지를 보내 새로 생긴 라우터의 LSDB 초기화
 - 초기화 이후 안정 상태가 됨
 - 3. 링크 상태 갱신 메시지 송신
 - 안정 상태의 라우터는 주기적으로 링크 상태 갱신 메시지를 송신해 자신의 링크 상태를 광고
 - 4. 링크 상태 승인 메시지 송신
 - 링크 상태 갱신 메시지를 수신한 라우터는 링크 상태 승인 메시지로 응답

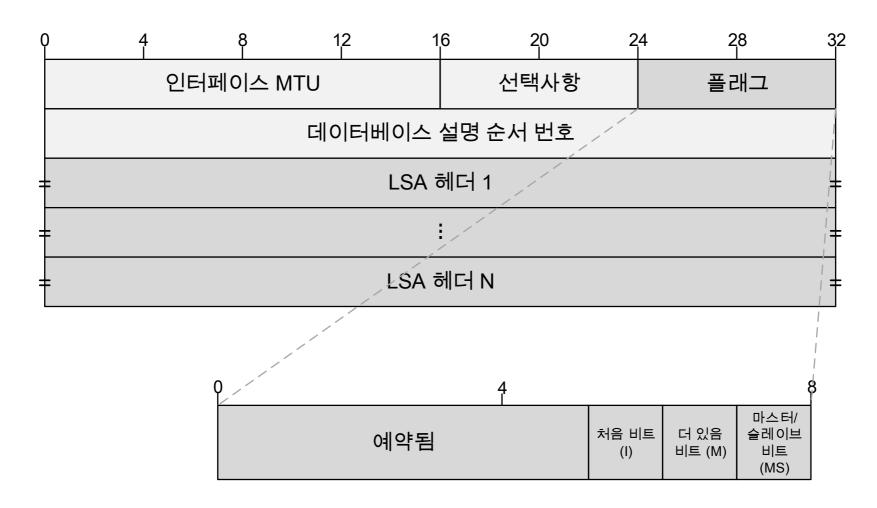
- 일반 동작
 - 메시지 인증
 - OSPF 표준에서 보안을 위해 인증을 사용하도록 명시됨
 - 선택적으로 인증 사용
 - 인증을 사용하지 않는 널(NULL) 인증
 - 간단한 비밀번호 인증
 - 해시 암호화(MD5) 인증

- •메시지 포맷
 - OSPF 공통 헤더 포맷

- 메시지 포맷
 - OSPF 공통 헤더 포맷

필드명	크기(바이트)	설명
버전 번호	1	2 : OSPF 버전 2
유형	1	OSPF 메시지 유형 식별 (1 : Hello / 2 : 데이터베이스 설명 / 3 : 링크 상태 요청 / 4 : 링크 상태 갱신 / 5 : 링크 상태 승인)
패킷 길이	2	메시지의 길이를 바이트로 표시
라우터 ID	4	메시지를 생성한 라우터의 ID
영역 ID	4	메시지를 보낸 라우터가 속한 OSPF 영역
체크섬	2	인증 필드를 제외한 모든 메시지를 사용하여 체크섬 계산
인증 유형	2	메시지에서 사용하는 인증 유형 (0 : 인증 사용 안함 / 1 : 간단한 비밀번호 인증 / 2 : 암호화 인증)
인증	8	필요 시 메시지의 인증을 위해 64비트 필드 사용

- •메시지 포맷
 - OSPF Hello 메시지 포맷



• 메시지 포맷

• OSPF Hello 메시지 포맷

필드명	크기(바이트)	설명
네트워크 마스크	4	라우터가 메시지를 보내고 있는 네트워크의 서브넷 마스크
전송 간격	2	메시지를 보내는 라우터가 Hello 메시지를 받기 원하는 초단위 간격
선택사항	1	라우터가 지원하는 OSPF 선택사항 기능
라우터 우선 순위	1	백업 지정 라우터로 선출 시 사용할 라우터의 우선 순위
라우터 장애 간주 간격	4	이 필드에서 지정한 초단위 시간이 지나면 장애 발생으로 간주
지정 라우터	4	어떤 네트워크에서 특별한 기능을 수행하도록 지명된 라우터의 주소로 없는 경우 0으로 설정
백업 지정 라우터	4	백업 지정 라우터의 주소로 없는 경우 0으로 설정
주변 라우터	4의 배수	라우터가 최근에 받은 Hello 메시지를 보낸 라우터의 주소

- •메시지 포맷
 - OSPF 데이터베이스 설명 메시지 포맷

- 메시지 포맷
 - OSPF 데이터베이스 설명 메시지 포맷

필드명	크기 (바이트)	설명
인터페이스 MTU	2	라우터의 인터페이스로 단편화하지 않고 보낼 수 있는 최대 IP 메시지 크기
선택사항	1	라우터가 지원하는 OSPF 선택사항 기능
플래그	1	데이터베이스 설명 메시지 교환에 대한 정보를 알리기 위해 사용
데이터베이스 설명 순서 번호	4	데이터베이스 설명 메시지를 순서대로 정렬하기 위한 순서 번호
LSA 헤더	가변	LSDB에 대한 정보를 전달하는 LSA 헤더 포함

- •메시지 포맷
 - OSPF 데이터베이스 설명 메시지 플래그

하위 필드명	크기(비트)	설명
예약	5	예약되어 모두 0으로 설정
처음(I, Initial)	1	데이터베이스 설명 메시지를 처음 보낼 경우 설정
더 있음(M, More)	1	다음에 데이터베이스 설명 메시지가 더 있는 경우 설정
마스터/슬레이브	1	메시지를 보내는 라우터가 마스터인 경우 1, 슬레이브인 경우 0

- 메시지 포맷
 - OSPF 링크 상태 요청 메시지 포맷

필드명	크기(바이트)	설명
LS 유형	4	원하는 LSA 유형
링크 상태 ID	4	LSA의 식별자로 연결된 라우터나 네트워크 IP 주소를 주로 사용
광고 라우터	4	갱신이 요청된 LSA를 생성한 라우터 ID

- •메시지 포맷
 - OSPF 링크 상태 갱신 메시지 포맷

필드명	크기(바이트)	설명
LSA 수	4	메시지에 포함된 LSA 수
LSA	가변	하나 이상의 LSA가 들어감

- 메시지 포맷
 - OSPF 링크 상태 승인 메시지 포맷

필드명	크기(바이트)	설명
LSA 헤더	가변	승인할 LSA를 식별하기 위한 LSA 헤더를 가짐

- •메시지 포맷
 - OSPF 링크 상태 광고 헤더 포맷

필드명	크기(바이트)	설명	
LS 나이	2	LSA가 생긴 후 지난 초단위 시간	
선택사항	1	라우터가 지원하는 OSPF 선택사항 기능	
LS 유형	1	LSA가 정보를 제공하는 링크 유형	
링크 상태 ID	4	링크를 식별하며 주로 링크가 있는 라우터나 네트워크 IP 주소를 사용함	
광고 라우터	4	LSA를 만든 라우터의 ID	
LS 순서 번호	4	오래되거나 중복된 LSA를 찾기 위해 사용하는 순서 번호	
LS 체크섬	2	에러가 생긴 데이터를 판별하기 위한 체크섬	
길이	2	헤더 길이 20바이트를 포함하는 총 LSA 길이	

- 메시지 포맷
 - OSPF 링크 상태 광고 헤더 LS 유형

값	링크 유형	설명
1	라우터 LSA	라우터와 연결된 링크
2	네트워크 LSA	네트워크와 연결된 링크
3	IP 네트워크에 관한 요약 LSA	영역을 구분한 경우, 네트워크에 관한 요약 정보
4	AS 경계 라우터에 관한 LSA	영역을 구분한 경우, AS 경계 라우터에 연결된 링크에 관한 정보
5	AS 외부와 연결된 링크에 관한 LSA	AS 외부로 가는 링크

Thanks!

정 재 형 (jahhyeong@pel.sejong.ac.kr)